
Mayhem: Targeted Corruption of Register and Stack Variables

Andrew J. Adiletta∗

ajadiletta@wpi.edu
Worcester Polytechnic Institute

Worcester, MA, USA

M. Caner Tol∗

mtol@wpi.edu
Worcester Polytechnic Institute

Worcester, MA, USA

Yarkın Doröz
ydoroz@wpi.edu

Worcester Polytechnic Institute
Worcester, MA, USA

Berk Sunar
sunar@wpi.edu

Worcester Polytechnic Institute
Worcester, MA, USA

ABSTRACT

In the past decade, many vulnerabilities were discovered in mi-
croarchitectures which yielded attack vectors and motivated the
study of countermeasures. Further, architectural and physical im-
perfections in DRAMs led to the discovery of Rowhammer attacks
which give an adversary power to introduce bit flips in a victim’s
memory space. Numerous studies analyzed Rowhammer and pro-
posed techniques to prevent it altogether or to mitigate its effects.

In this work, we push the boundary and show how Rowhammer
can be further exploited to inject faults into stack variables and
even register values in a victim’s process. We achieve this by tar-
geting the register value that is stored in the process’s stack, which
subsequently is flushed out into the memory, where it becomes
vulnerable to Rowhammer. When the faulty value is restored into
the register, it will end up used in subsequent iterations. The regis-
ter value can be stored in the stack via latent function calls in the
source or by actively triggering signal handlers. We demonstrate
the power of the findings by applying the techniques to bypass
SUDO and SSH authentication. We further outline how MySQL
and other cryptographic libraries can be targeted with the new at-
tack vector. There are a number of challenges this work overcomes
with extensive experimentation before coming together to yield an
end-to-end attack on an OpenSSL digital signature: achieving co-
location with stack and register variables, with synchronization
provided via a blocking window. We show that stack and registers
are no longer safe from the Rowhammer attack. 1

KEYWORDS

Rowhammer, Stack, Register Flipping

1 INTRODUCTION

The emergence of attacks such as Meltdown [29] and Spectre [25]
exposed intrinsic vulnerabilities in our computing infrastructure.
These microarchitectural leakages were further developed and ex-
ploited in a number of studies, e.g., [6, 14, 22, 45, 47].

Rowhammer Fault Injection While these vulnerabilities fo-
cused on passive leakages, Rowhammer emerged as a realistic tool
for an attacker to actively inject faults in DRAMs [24, 38]. Rowham-
mer exploits the fact that if a row in DRAM is accessed repeat-
edly, this may lead to bit flips in neighboring rows. Rowhammer
has proven effective in real-life attack scenarios. For instance, [16]

∗Both authors contributed equally to this research.
1The code will be available on https://github.com/vernamlab/mayhem.

showed that it is possible to gain root access with opcode flip-
ping in the sudo binary, [37] demonstrated an end-to-end attack
breaking OpenSSH public-key authentication, [49] demonstrated a
Bellcore attack on a CRT-based RSA implementation in WolfSSL,
to recover secret keys. Further pushing the boundaries, [17] and
[12] have shown that Rowhammer can be applied even remotely
through JavaScript. Similarly, [42] and [30] demonstrated that
Rowhammer can be executed over the network. Rowhammer is
also applicable in cloud environments [8, 50] and heterogeneous
FPGA-CPU platforms [49]. Beyond DRAMs, [5] has shown that
flash memories are also prone to Rowhammer-like cell-to-cell in-
terference, which then, when used to target file-system pages, can
result in privilege escalation [27].

RowhammerCountermeasures.The severity of the threat moti-
vated numerous Rowhammer countermeasures, e.g., for detection
[2, 7, 10, 18, 20, 21, 35, 51] and mitigation [4, 17, 46]. Unfortu-
nately, [16] has shown that all of these countermeasures are in-
effective. Further, [9] showed that ECC, a hardware-enabled error
checking built into many memory devices, can also be bypassed.
Another hardware countermeasure Target Row Refresh (TRR), has
also been recently defeated [13]. This work was extended in [12],
claiming that more than 80% of the DRAM chips in the market are
still vulnerable to Rowhammer. Quite recently, hammering beyond
adjacent locations, i.e., HalfDouble [26] hammering, was shown to
be effective in circumventing TRR mitigations.

Faulting CPU Internals.With significant efforts put into advanc-
ing Rowhammer attacks and countermeasures, one constant has
been the assumption that CPU internals is impervious to software-
based fault injection attacks. Specifically, SRAM-based registers
and caches are assumed to be free from fault injection (except via
direct physical manipulations such as in laser fault injection at-
tacks). On the other hand, CPU-external devices such as DRAMs
are greatly vulnerable to physical tampering. This view has been
around since the early times of Trusted Computing and was moti-
vated further by the introduction of cold-boot attacks [19].

In this work, we demonstrate that CPU internals such as reg-

ister values are also vulnerable. Until now, Rowhammer attacks
were generally targeted at corrupting dynamically allocated mem-
ory [32] or binaries stored on disk loaded into memory [38]. Here
we show that register values can be forced by an attacker to be
saved to the stack and flushed out to memory, where they become
vulnerable to Rowhammer fault injection. Upon reload, the faulty
values are reloaded into the registers before resuming execution.

1

https://github.com/vernamlab/mayhem

Targeting the Stack. Besides flushed register values, vulnerable
pieces of code exist within the stack of programs, e.g. security
checks and authentication states. When these sensitive variables
are corrupted, this may result in privilege escalation. Crypto li-
braries, for instance, minimize or eliminate dynamic memory and
stack use either to support execution in constrained environments,
or for safety-critical systems such as embedded or RTOS systems
or to minimize exposure of potentially vulnerable internal secrets.
The wolfSSL library, for instance, supports compilation options
to avoid dynamic memory use. The NaCL library, in contrast,
avoids dynamic memory and variable-size stack allocation alto-
gether. Crypto library implementations, therefore, heavily rely on
registers, and stack variables. Here we show that such variables
are not secure against fault injection. Hence the attack surface of
Rowhammer is greater than previously assumed.

Our Contribution

In this paper, we systematically analyze the threat imposed by
Rowhammer fault injections to stack variables and register val-
ues which were previously considered secure against Rowhammer.
Specifically, we
• Introduce a novel attack to inject faults into register values

through the stack memory;
• Show how static code/data allocation can be manipulated with

bait pages to achieve co-location with the victim’s stack;
• Introduce new synchronization techniques to enable practical

means to target stack and register via Rowhammer;
• Demonstrate attacks on SUDO, OpenSSH, and MySQL;
• Highlight new RSA Bellcore vulnerabilities enabled by the at-

tack vectors discovered in OpenSSL;
• Demonstrate a full attack on code using OpenSSL for signature

verification with attacks on both stack and register variables
• Outline mitigative coding styles to minimize the attack surface

against the newly introduced attack vectors.

Outline of the Paper

The rest of the paper is organized as follows. Section 2 gives back-
ground on our attack. In Section 4, we explain the threat model
of our attack. In Section 7, we explain the offline and online stages
of the attack which include getting physically continuous memory
and profiling bait pages. In Section 8, we explain injecting faults in
stack memory and explain how to flip CPU register values using
Rowhammer. In Section 9, we give the experimental evaluation. In
Section 10, we explain our findings and results on OpenSSL, sudo,
and OpenSSH. In Section 11, we give our analysis on RSA Bellcore
Attacks on OpenSSL and MySQL. In section 12 we demonstrate a full
end-to-end attack on an OpenSSL client/server signature verifica-
tion. In Section 13, we propose several countermeasures against
our attack.

2 BACKGROUND

2.1 Rowhammer Attacks

With increasing DRAM densities the chance for bit flips and re-
liability failures is increasing. Hence, to retain data every DRAM
row has to be continuously refreshed usually with 64 msec inter-
vals. Although refreshing the rows periodically helps preventing

the data corruption, Kim et al. [24] showed that frequent access
to the neighbor rows causes faster charge leakage, which effec-
tively causes bit flips before the next refresh. This is known as the
Rowhammer effect [24]. Seaborn et al. [38] introduced the double-
sided Rowhammer flipping the victim cells even faster.

Gruss et al. [16] introduced one-location hammering and
achieved root access with opcode flipping in sudo binary in 2018.
Gruss et al. [17] and Ridder et al. [12] have shown that Rowham-
mer can be applied through JavaScript remotely. Tatar et al. [42]
and Lip et al. [30] have proved that it can be executed over the net-
work. Rowhammer is also applicable in cloud environments [8, 50]
and heterogeneous FPGA-CPU platforms [49]. In 2020, Kwong et al.
[28] demonstrated that Rowhammer is not just an integrity prob-
lem but also a confidentiality problem.

There have been many efforts on Rowhammer detections [2,
7, 10, 18, 20, 21, 35, 51] and neutralization [4, 17, 46]. Gruss et

al. [16] have shown that all of these countermeasures are ineffec-
tive. Cojocar et al. [9] in 2019 showed that the ECC countermea-
sure is not secure either. Another hardware countermeasure Target
Row Refresh (TRR) has also been recently bypassed by Frigo et al.

[13]. This work was extended by Ridder et al. [12] to attack TRR-
enabled DDR4 chips from JavaScript and claim that more than 80%
of the DRAM chips in the market are still vulnerable to Rowham-
mer. Quite recently, hammering beyond adjacent locations was
shown [26] to be effective in circumventing TRR mitigations.

2.2 Countermeasures in Crypto Libraries

Physical fault injection attacks are well known among crypto prac-
titioners [3]. Crypto libraries, especially ones designed for em-
bedded platforms, have implemented countermeasures since the
early 2000s. For instance, OpenSSL implements error checks in
CRT-based exponentiation to thwart Bellcore attacks [3]. Still, fault
injection has proven effective in [40] to corrupt Elliptic Curve
Parameters in the OpenSSL library. Further, [31] demonstrated
a Rowhammer fault injection vulnerability in WolfSSL that re-
sulted in ECDSA key disclosure. The fault was injected during
the signing operation with private ECC keys, which occur during
a TLS handshake between client and server. WolfSSL addressed
this vulnerability by implementing a series of checks during each
stage of the signing process to detect if data has been tampered
with, and WOLFSSL_CHECK_SIG_FAULTS was released as a security
measure[34]. Importantly, these checks that protect dynamic mem-
ory operate on the idea that variables in the stack are safe from
Rowhammer, which this paper will demonstrate is not the case.

3 ASLR

Address-space layout randomization (ASLR) is often used as a pri-
mary defense against memory corruption attacks. ASLR arranges
the address space of a process randomly to prevent a user from tar-
geting a specific area of code. It is supposed to rearrange the stack,
heap, and libraries of an executable in a non-deterministic way. In
theory, if an attacker finds a way to corrupt the memory it should
not have access to, it should not be able to target any particular
area in the process.

2

ASLR has been shown to be vulnerable in the past, typically
through the use of software-side weak points such as memory dis-
closure vulnerabilities that reveal run-time addresses [11]. More
recent attacks have also shown that ASLR can be broken through
the use of EVICT+TIME cache attacks that can derandomize ad-
dress spaces by correlating cache line addresses with page-table
entries [14]. Importantly, these attacks on ASLR do not circumvent
stack ASLR, which is implemented in the Linux kernel as shown
in Listing 1.

Listing 1: Page offset randomization for Stack memory in

Linux Kernel

1 unsigned long arch_align_stack(unsigned long sp){

2 if (!(current->personality & ADDR_NO_RANDOMIZE) &&

randomize_va_space)

3 sp -= get_random_int() % 8192;

4 return sp & ~0xf;

5 }

Stack ASLR should randomize the base address of the stack result-
ing in random variable offsets as seen in Figure 1 to the point a
brute force attack randomly flipping bits in the system would be
ineffective.

Figure 1: Histogramof page offset of a stack variable in stack

memory out of 100K trials.

4 THREAT MODEL FOR MEMORY MAYHEM

We will explain the attack scenarios in detail for each attack
target in Section 10. In line with the previous Rowhammer at-
tacks [8, 16, 17, 24, 50], we assume attacker-victim co-location in
the same system. Co-location is a common assumption for many
micro-architectural side-channel attacks [6, 25, 29, 45, 47]. We as-
sume the operating systemworks as intendedwithout any compro-
mise in its integrity and the attacker has user privileges through-
out the paper. We assume the attacker does not have access to any
service that reveals the physical address or DRAM addressing in-
formation. Our attack does not require huge-page configuration
and works with standard-size pages.

5 BYPASSING STACK ASLR

Initially, it would seem that ASLR makes running a stack attack
difficult. However, profiling a process to determine the number of
bait pages required to be released to the system reduces the entropy
significantly.

0 500 1000 1500 2000 2500 3000 3500 4000

Page Offset

20

40

60

80

100

120

140

160

180

200

#
 B

a
it
 P

a
g
e
s

Figure 2: The relation between the number of bait pages vs.

page offset of a stack variable. When the page offset is large,

the number of bait pages is significantly higher (shown in

red).

The physical address is split into two parts; the page number
and the page offset. The number of total bits in a physical address
is calculated as log2 (?) where ? is the total size of the main mem-
ory. For a system with 8 GB of main memory, the physical address
is log2 (8��) or 33 bits. Our operating system was also fragment-
ing memory into indivisible 4 KB-sized pages, which can be rep-
resented as 12 bits. This means that in the physical address of a
system with 8 GB main memory and 4KB pages, the first 21 bits
represent the page of the physical address, and the last 12 bits rep-
resent the offset within the page.

With our bait pages attack, we can effectively remove the en-
tropy of the first 21 bits of randomization by forcing the base ad-
dress to be placed on a known page around 45% of the time, ac-
cording to our findings. This leaves the last 12 bits of randomiza-
tion to deal with. Through experimentation, we noticed that the
entropy in the last 12 bits can be further reduced. We found that
the last 4 bits of the address always stayed the same. When attack-
ing OpenSSL, for example, we noticed that the last 4 bits always had
a value of 0x8. If the variable we are attacking is a 4-byte variable,
then there are only four possibilities for the last 4 bits of an address
to be potentially vulnerable; =, = + 1, = + 2, and = + 3, where = is the
starting address of the variable. This further reduces our ASLR en-
tropy to a mere 8 bits, which can be easily exhausted. We found a
relationship between the number of bait pages required to be re-
leased by an attacker program to locate a variable in the Rowham-
mer page correctly and the offset that variable appears within that
page. We believe this to be a novel discovery because part of the
intention of ASLR is to randomize the page offset.

We found this relationship by unmapping pages in our attacker
program and recording their physical address in a list, then in our
victim program, determining where our target variable appears in
the list, as well as the page offset address of the target variable (the
last 12 bits).While this relationship was different for each program,
it was clear that therewas always a smaller set of data points where
the number of bait pages clearly limited the number of possible
page offsets. We created a graph of this relationship in Figure 2.
We can see from the graph that if 180 bait pages were required
to be released to mount the victim variable in vulnerable memory
correctly, then the page offset of the said variable would be around
4000. Likewise, if the number of bait pages is 40, it can be assumed

3

that the page offset is going to be somewhere between 0-2500. It
should not be possible to find patterns in page offset because ASLR
intends the offset to be based on random number generation as the
offset is masked by a randomly generated value.

To understand the root cause of this unusual behavior, we inves-
tigate the following methods that leak information about the page
offset.

Controlling the Page Offset with ASLR disabled. We investi-
gate the dependency between the number of bait pages and the
page offset of a stack variable in a more controlled environment.
We create the following function where a buffer with a predefined
BUFFER_SIZE before integer variable var.

void main(){

char buffer[BUFFER_SIZE] = {0};

int var = 0;

}

Note that both the buffer and the variable are stored in the stack.
We disable ASLR in the system to make sure we have full con-
trol on the page offset of the variable. In Figure 3, we vary the
BUFFER_SIZE variable from 0 to 4K. Increasing the size of the buffer
pushes the variable back in the stack and linearly decreases the
page offset. We control the page offset by varying the size of the
buffer. We also observe the number of required bait pages has a
sudden change together with the page offset of the variable. We
speculate this behavior is caused by crossing the page boundaries
while increasing the BUFFER_SIZE and results in an increase in the
number of total pages consumed by the program. Next, we inves-
tigate the same dependency with ASLR enabled.

Page Fault Side Channel. We found that monitoring for page
faults gives us a side channel to determine the offset set by ASLR.
A page fault will happen when a process requests data from a
page in memory that is not currently loaded in DRAM. When the
page fault occurs, the page needs to be moved from the swap space
in the storage to DRAM. There are two types of page faults; ma-
jor faults and minor faults. Major faults occur when a page is re-
quested that does not exist in memory and needs to be brought

0 500 1000 1500 2000 2500 3000 3500 4000

Buffer Size [bytes]

32

34

36

38

40

42

44

46

48

50

#
 B

a
it
 P

a
g
e
s

0

500

1000

1500

2000

2500

3000

3500

4000

P
a
g
e
 O

ff
s
e
t

Figure 3: The dependency between the number of bait pages

(black) andpage offset (red)whenASLR is disabled. The page

offset of the variable ismanually controlled by changing the

size of the buffer. The jump in the # bait pages and page off-

set occurs at the same point.

Figure 4: Page Fault Side Channel Analysis Demonstrating

A Relationship Between Minor Page Faults and Page Offset

back from the swap space. A minor fault is less performance de-
grading and occurs when the page is currently in memory and
needs to be swapped back out to the disk (usually to free up space
in DRAM for other pages).

Looking at Figure 4, we can see that if the process receives 275
page faults (marked in red), we can guarantee that the location of
the offset in DRAM is going to be somewhere between 200 and 800,
which reduces the search space and randomization of the ASLR
offset bits bymore than a factor of 6. Additionally, if 286 page faults
are detected, we know that the offset will generally not be between
200-800, which also reduces the search space.

We are not sure why this side channel exists, but we specu-
late that the randomized page offset throws page faults which
we can monitor using performance monitoring by the attacker. It
is important to note that this performance monitoring, e.g., the
/usr/bin/time command, do not require special permission to run
and thus are practical to use in a real attack.

Remapping Pages Side Channel. One technique we used was
page remapping, where we would unmap = pages of our attacker
program, launch our victim process, then remap n pages back to
our attack program. If we unmapped 500 pages, launched our vic-
tim process, then remapped 300 pages back to our attacker pro-
gram, we would assume that the number of bait pages our victim
required was 200 pages. We found a slight correlation in the data,
but ultimately it was too noisy to be useful. We speculate this is be-
cause remapping pages pulls from unpredictable pools of memory,
so the number of pages is not zero-sum.

6 EXPLOITING OFFSET RANDOMIZATION

Although ASLR is built as a security measure to prevent mem-
ory attacks, it can be exploited to make the Rowhammer attack
more powerful. We propose a technique named relaunching to ex-
ploit ASLR for Rowhammer.

The attacker first profiles the memory to find a flippy bit loca-
tion in memory. In some DRAMs, these flippy locations may be
rare. For some Rowhammer enabled attacks, that require a specific
bit in the page to be flippy, the attack will become less viable. In our
attack, instead, we first find a flippy bit in memory, then perform
the following steps:

4

(1) After finding a flippy bit location, the attacker frees mem-
ory to the system containing the number of bait pages fol-
lowed by the flippy page;

(2) The attacker launches the victim process which fills the
recently deallocated pages;

(3) The attacker performs the Rowhammer attack on the vic-
tim process (not knowing if the flippy bit aligns with the
bits required to be flipped in the victim process);

(4) The victim process ends and the attacker process remaps

the memory used by the victim process back to itself and re-

peats the attack with the same flippy row.
With this approach, theoretically, the attacker only needs to find

a single flippy bit in the whole system for the attack to work. This
is a dramatic improvement over other Rowhammer attacks where
extensive profiling is required, and often thousands of flips are re-
quired before a successful attack.

Relaunching works because ASLR will put the variable into a
new location in the page the next time it runs. This means that
rather than looking for a new flippy bit that might colocate where
a flip is needed in the victim process, the victim can simply be
relaunched and ASLR reshuffles the variable somewhere else, po-
tentially into the location where it can be flipped by the flippy bits
in the page.

7 FLIPPING BITS IN THE STACK AND
REGISTER VARIABLES

For the Rowhammer attack on DDR4 memory, we perform a multi-
sided attack to circumvent TRR protection. We found that a multi-
sided attack with 11 rows was most effective at getting flips on our
system and we used mfence to prevent out-of-order execution. It
is possible that without mfence CPU optimizations would disrupt
the critical order that rows are accessed for the multisided attack
which would prevent the attack from working. We found 1M ac-
cesses of all the rows were optimal in getting flips and reducing
profiling/online time. We also found that doing 100 iterations of
1M accesses along with 100K nops in between also improved the
efficacy of the attack in getting flips.

7.1 Offline Memory Profiling

Rowhammer requires that rows in DRAM are adjacent to each
other physically. We achieve this through the use of the SPOILER
and Row Conflict attacks. We use SPOILER [22] because it leaks
virtual to physical address translation without the need to read the
pagemap file, which would require root access. SPOILER takes ad-
vantage of a microarchitecture optimizations speculative loads and
store forwarding. For finding addresses that are within the same
bank, we use row conflicts [36], which is another timing side chan-
nel that we exploit to colocate memory for Rowhammer.

Profiling for Contiguous Memory. SPOILER first allocates a
large buffer in the memory of the attacker program. The mem-
ory from this buffer is distributed throughout the DRAM randomly.
Within awindow of thememory buffer, SPOILERwrites zeros to all
the addresses, then times how long it takes to load the first entry in
the array. These timings are plotted in Figure 5; physical memory
dependency requires more cycles to complete and thus would ap-
pear as peaks on the graph. For every system, the threshold values

0 0.5 1 1.5 2 2.5 3 3.5 4

Page Number 10
4

0

100

200

300

400

500

600

700

800

900

C
lo

c
k
 C

y
c
le

Figure 5: Timing peaks found by SPOILER. Equidistant

peaks indicate physical continuity in memory.

of SPOILER need to be adjusted. These threshold values include
the timing required to call a memory read an outlier in the dataset
(a timing measurement above a certain value is probably the result
of a system interrupt or some other event rather than physical con-
tinuity), and a timing threshold value to qualify a value as a peak
and thus part of the continuous memory buffer.

In our experiments, we generally looked for about 3-5% of our
memory allocated to SPOILER to be physically continuous. This
means that if we allocated 1024 MBytes of memory to our buffer,
we would expect to find around 32-64 bytes of continuous mem-
ory. This varies depending on the experiment and the machine the
experiment is running on.

Finding Rows in the Same Bank. In addition to finding memory
that is physically continuous, the memorymust also be in the same
bank of the DRAM for Rowhammer to work. We use the row con-
flict side channel to leak DRAM information which, like SPOILER,
does not require root access. Rowconflict reads from the first ad-
dress in the physically continuous memory buffer, then it reads
from address = (where = is 1 through the length of the memory
buffer) and calculates the time difference between reads. A larger
time difference indicates that the row buffer within the DRAM
bank needed to be cleared and thus caused a spike in timing. Just
like SPOILER, row conflict needs threshold values to be experimen-
tally determined and defined for each machine.

7.2 Profiling for Bait Pages

In order to flip a variable in the stack of a program, the page that
the variable is located in needs to be placed in a page that has a
flippable bit at the correct page offset. There are a number of pages
used by the victim process that are irrelevant to our attack and
would fill our flippy page before the page with our target variable.
Thus, we must release unused filler pages we call bait pages, which
are filled with the victim’s data that is irrelevant to the attack first.
To flip a variable that is stored in a register and pushed to and
popped from stack, a similar process is applied, but more complex
profiling is necessary by manually looking at the memory space in
the Linux kernel for the register value.

Bait Page Profiling For StackAttacks.The number of bait pages
that need to be released depends on the process and if ASLR is en-
abled. The pseudo-code for releasing bait pages is given in Listing 2.
You can see that the profiling process first allocates pages into its

5

own process space to be released as bait for the victim process. It
then unmaps the flippy page (this happens in the online stage) and
unmaps the bait pages so they get filled first.

During the offline stage, we determine the proper number of
bait pages to release by first releasing a large number bait pages
(500 or more) and recording all the physical addresses of the re-
leased pages into a text file. Then, we launch the victim process and
translate the virtual address of the target variable into a physical
address, which we then searched for in the text file with released
addresses. The index of the physical address in the text file deter-
mined the number of bait pages we needed to release. Although
there is certain variability in how many of the bait pages are con-
sumed by the victim process before it allocates the target variable
to a page, experimentally we found the victim process will con-
sume the same number of bait pages 30% of the time as stated in
section 9.3.

Bait Page Profiling For Register Attacks. Registers also fall vic-
tim to the same bait pages attack, but profiling is more difficult be-
cause they do not have a virtual address that can be translated into
a physical address which can be found in the bait pages released.
Instead, during the profiling stage, we edit the victim process to
give the register a unique value (like 0xDEADBEEF), then look into
the processesmemorywith \proc\PID\mem and look of the unique
value. This is the effective virtual address of the register when it
gets pushed to stack, and will get put back into the stack when
its popped off. We can use the same method of converting the vir-
tual address to a physical address using the PID and the pagemap
file for the process. Importantly, editing the source code to add a
unique value to the register is only necessary during the offline
stage. During the online stage, the source code for the victim re-
mains untouched, and the number of bait pages consumed before
the registers are pushed to stack remain the same.

Listing 2: Pseudo code showing how pages can be forced into

a specific area inmemory using amapping-unmapping tech-

nique

1 buffer = mmap(baitPages * PAGESIZE)

2 munmap(flippyPageAddr, PAGESIZE)

3 for(i = 0; i < bait_pages; i++)

4 munmap(&buffer[i*PAGESIZE], PAGESIZE)

You can see in Listing 2 that we release the bait pages before the
flippy page. This is because the Linux Buddy Allocator algorithm
that is used to allocate memory to different processes effectively
acts like a last-out-first-in system, where the latest pages released
to memory are used first.

7.3 Online Attack Phase

Releasing The Flippy Page and Bait Pages. The first stage of
the attack is releasing the flippy page found during the offline pro-
filing stage, then releasing the correct number of bait pages also
found during the profiling stage. It is important to immediately
launch the victim process once the bait pages are released and to
start the process in the same way that it was started during the
profiling stage.

Normal Runtime

Victim Start Victim End

Blocking

Window

Victim Start Victim End

Blocking

Attack Window

Figure 6: Diagram showing the run time of a programwith a

blocking window allowing the attacker to attack at the right

time

Attacking Processes After Sending SIGSTOP. In practice, the
victim process cannot be altered to send a signal when it is ready
to be attacked and wait for a signal that the attack has finished.
Instead, we can use the SIGSTOP signal to stop the program’s exe-
cution and create a probabilistic model to determine if the process
has stopped in the correct place in the process execution to attack
the variables. After the variables have been attacked, the SIGCONT
signal can be sent to continue its execution. For an attacker to have
permission to send a signal, it must belong to the same session.
This is special to the SIGCONT signal 2.

Attacking Processes During a BlockingWindow. Themost op-
timal scenario for an attack is for vulnerable code to have a block-
ing window where the process is waiting for an event that may be
triggered by the attacker. For SUDO, this could be the period where
the process is waiting for the attacker to enter a password. The pro-
cess saves state data to stack while waiting for the user to submit
a password. High level examples of synchronizing blocking codes
are:

• Password Input
• IP Socket Connections
• Signal Interrupts
• Media Uploads
• Other User Input

Looking at Figure 6, we can see that there is a blocking pe-
riod during the attack window. This allows for synchronization
between the victim and attacker so there is no longer a question
of probability of the attacker will launch the Rowhammer attack at
the right time. Practically, we can see an example of this on Section
12.1 of syncronization on a real-world TLS handshake.

Flipping Bits using Rowhammer. The final step in the work-
flow after the target variable is loaded into memory is to actually
flip the bits in the variable. While the profiling step allowed us to
evaluate which bits were flipped in a row, because we do not con-
trol the area of memory being flipped, we cannot see which bits
specifically were flipped. However, generally, the success of an at-
tack can be determined by checking the new state of the process.

2https://www.sudo.ws/docs/man/1.8.10/sudo.man/

6

https://www.sudo.ws/docs/man/1.8.10/sudo.man/

For example, if the attack objective was achieved the attacker may
bypass password authentication.

There have been many efforts to detect Rowhammer by track-
ing consecutive reads to adjacent rows in a Serial Presence Detect
(SPD) chip Intel CPUs deploy a mitigation known as pseudo-TRR
or pTRR, which reads the Maximum Activation Count, or MAC
value from the SPD and if reads to consecutive rows reaches the
MAC value, the Intel CPU refreshes the row.

A multisided attack works even with TRR enabled, with a strat-
egy based on the Trrespass multisided attack [13].

Figure 7: Visualization of the differences between a double-

sided and multi-sided attack. A multi-sided attack bypasses

TRR

In Figure 7, we see that there are a number of attacker rows and
a number of victim rows in the multisided attack. The diagram
shows a multisided attack with 4 attacker rows.

8 FLIPPING BITS IN CPU REGISTERS

The stack is a memory section that software processes use to store
values temporarily. The location of the last variable inserted into
the stack is saved in the stack pointer registers. In assembly lan-
guage, the stack can be used freely to store variables. However,
higher-level languages and compilers use a convention that is
based on the architecture and the operating system. These con-
ventions set rules for converting C code into an assembly code,
such as System V i386, System V x86_64, Microsoft x64, and ARM.
Each convention uses different registers for function inputs and
return variables, and in certain cases the convention also uses the
stack to store temporary variables. This makes the variables vul-
nerable to fault attacks by using Rowhammer on the stack. Now
we will summarize the convention to show which situations cause
the compiler to use stack for variable storage. Since our setup is
focused on Linux, we will focus on System V x86_64.

8.1 Forcing Register Eviction to Stack

Intel-Ubuntu C convention.The architecture uses 16 64-bit reg-
isters which are referred to as rax, rbx, rcx, rdx, rbp, rsp, rsi,
rdi, r8-15. Some of the registers are special purpose registers, e.g.
rsp: register stack pointer and others are generic/scratchpad regis-
ters. When a C code is compiled and converted into assembly code
the following convention is used for functions:
• rax holds the return value of the function

• rdi, rsi, rdx, rcx, r8, r9 holds the input parameters of the func-
tion. If there are more than 6 input parameters, rest is written
into the stack.

• rax, rdi, rsi, rdx, rcx, r8-11are used as scratch registers.
• rax, rdi, rsi, rdx, rcx, r8-11are caller-saved registers. This

means that if a routine calls a subroutine, it is the responsibility
of the main routine to preserve the values of any relevant reg-
isters, as the subroutine is free to modify them. To do this, the
calling function can save these values in other registers that will
not be changed during the subroutine call or save them on the
stack.

• rbx, rsp, rbp, r12-15 are callee-saved registers. When a routine
makes a subroutine call, it is the responsibility of the subroutine
to ensure that the values of the relevant registers remain un-
changed after the subroutine call is completed. To achieve this,
the subroutine pushes the contents of these registers onto the
stack and then restores the original values when it has finished
executing by popping them from the stack.

• When a function call has a large number of variable declarations,
compilers aim to utilize as many registers as possible to store
these values in order to optimize performance. However, when
the number of available registers is insufficient to hold all the
variables, the compilers will resort to using the stack to store
the excess variables.
When the compilers use the Intel-Ubuntu C convention, the ex-

cess variables are stored on the stack if a function has many vari-
ables. This makes the variables vulnerable to stack attacks. Our
inspection of disassembled code of common libraries shows that
these cases are less common as compilers aim to reduce stack us-
age, but there is still a possibility. Of course, the attack can only be
executed if the targeted variable is written to the stack. To enable
the stack attack, we can force processes to temporarily store regis-
ter contents on the stack during the execution of another process.
This expands the scope of the attack beyond just variables stored
on the stack.

Below, wewill discuss twomethods to attack the stack variables.

Passive. The first method exploits a natural occurrence. When a
compiler uses the C convention to create executable code, it oc-
casionally stores register values in the stack for safekeeping, e.g.,
push instruction is used at the beginning of the function calls.

Listing 3: Example of

push from LibC recv

function

<__recv@@GLIBC_PRIVATE>:

...

push %ebx

...

%ebx,%eax

pop %ebx

%esi

ret

It is hard to mitigate since it
is not visible in the source
code, which makes most of the
libraries potentially vulnerable
depending on the compiler op-
timizations. Higher levels of op-
timization settings in compilers
are more aggressive in using reg-
isters.

There are a number of com-
mon functions that push regis-
ter values to stack by default, as
shown in Figure 8. For example,

the ebx register is pushed to stack by both the sleep() function
[23] and the getchar() function [15]. Listing 3 from the glibc li-
brary shows the recv function pushes the ebx register to stack, and

7

pops the ebx register after the function completes. This is a com-
mon convention because registers are a fast but limited resource,
and values are pushed and popped from stack to optimize their us-
age. Once such a code pattern of storing security variables in reg-
isters and then pushing them to stack is found, these values can be
attacked via Rowhammer.

Active. We can actively force registers into the user stack by trig-
gering a signal handler function that pushes the registers into the
user stack. This is a built-in part of the Linux kernel to optimize
register usage. This enables a new type of active attack, where we
can target variables that are stored in registers. As seen in Figure
8, even though the variables may not be stored in the stack during
the compilation convention (as discussed previously), we can send
a signal to the victim process or create a contention by running an-
other process or making a system call. This will result in the victim
process storing its CPU registers in the stack, making the variables
vulnerable to a Rowhammer attack. We found experimentally that
signal handlers implemented in the C programs by default push
registers to stack, so any vulnerable data stored in those registers
would be candidates for a Rowhammer attack.

Since SIGSTOP cannot be handled by user programs, using it
alone will not flush registers to the user stack. However, if a pro-
gram has a custom signal handler3, the Linux kernel saves the reg-
ister content to the user stack while the signal handler is being
executed. This mechanism does not rely on the user’s application
logic. When we send SIGSTOP right after the previous signal, the
user’s signal handler also stops, and the register content of the user
program stays in memory until receiving a SIGCONT, giving the
attacker time to execute Rowhammer.

This is different than context switching which may force regis-
ters into kernel stack. In the context-switching case, the OS sched-
ules each process for a specific amount of time, switching between
them as needed. The OS saves the contents and state of the CPU
(including registers) to a stack in order to allow a process to re-
sume from where it left off when it is reloaded. The contents of
some registers are saved to the kernel stack associated with the
process, which can still be flipped as shown in [43].

9 EXPERIMENTAL EVALUATION

9.1 Experiment Setup

The experiments are conducted on a system with Ubuntu 20.04.01
LTS with 5.15.0-58-generic Linux kernel installed. The system uses
an Intel Core i9-9900K CPU with a Coffee Lake microarchitecture.
We used a dynamic clock frequency rather than a static clock fre-
quency to improve the practicality of the attack. End-to-end at-
tack experiments are done on a single DIMMCorsair DDR4 DRAM
chip with part number CMU64GX4M4C3200C16 and 16GB capac-
ity. DRAM row refresh period is kept as 64ms which is the default
value in most systems. For the experiments on sudo, we use ver-
sion 1.9.12p1 4, which is the latest sudo version at the time of this
work. We use the portable OpenSSH library with version 9.1p1 5 for
SSH experiments. To better accommodate the server environment

3PoC register spilling using SIGINT: https://gist.github.com/anonymous-
60819/d1d6137e17c34f761f7b33d60e922c9d
4sudo git commit number 3396267291328eccfcbc7bfb1729c77f30216513
5OpenSSH git commit number 0ffb46f2ee2ffcc4daf45ee679e484da8fcf338c

Forcing Register Eviction to DRAM

Cache

Processor

Registers

Main Memory (DRAM)

Explicit Push or

Signal Handler or

Context Switch

Contention or

clflush()

A
tt

a
c

k
e

r

Victim Variable

A
tt

a
c

k
e

r

Figure 8: We can evict registers to stack by switching con-

texts which flushes the registers to cache, and then with

clflush we can flush the cache to DRAM where data can be

flipped with Rowhammer

and reduce the noise caused by desktop applications, we use the
OS in console mode. For Rowhammer to successfully attack the
stack of a program, the variables being attacked need to be loaded
into memory at the right time. For experimental purposes in SUDO,
OpenSSH, OpenSSL and MySQL, we used signals to make sure that
the programs were synchronized.

9.2 Reproducibility of Bit Flips

Until this work, the reproducibility of bit flips induced by Rowham-
mer was not analyzed in detail. Therefore, it was not known
whether each flippy location has equally reproducible or not. As
the target size gets closer to a page size, every bit flip found is po-
tentially useful since it will land on the target. However, as the
target requires more precision, it is harder to find aligned bit flips;
therefore, it is critical to attempt only when we find highly repro-
ducible bit flips. This way, we can put the burden on the offline
memory profiling phase and keep the online time as short and ac-
curate as possible. To test the reproducibility of bit flips, we select
a 64 MB physically contiguous memory buffer. In DDR3, we apply
double-sided Rowhammer and slide the Attacker-Victim-Attacker
window by one at every step. Once we finish the buffer, we store
the bit flip locations and start the same process from the beginning.
We hammer the same memory buffer for 100 times and count the
number of flips for each bit location that has flipped at least once.
We found 1667 unique flippy bit locations in total. Figure 9 illus-
trates the frequency of bit flips in a heat map. We observe that
only a limited portion of found bit flips are actually reproducible,
while most of them are not reproducible at all in 100 trials.

9.3 Success Rate of Baiting Method

During our experiments, we found that with ASLR enabled, we
could successfully locate the target page into the flippy row about
30% of the time. With further engineering efforts, this number can
be brought up to 80% [28]. In Section 10, we refer to the ability to
locate our target page into the flippy row as our bait-page success

8

(a) DDR3 (b) DDR4

Figure 9: The comparison of heat maps of bit flips in DDR3

and DDR4 DRAM chips. Darker color illustrates the loca-

tions of more reproducible bit flips. The bit flips seen in

DDR4 are less reproducible than DDR3.

rate, as we deallocate a set number of bait pages for the system in
the hopes it will force our target variable into a vulnerable place
in memory.

9.4 Evaluation on Different DRAM Chips

Both offline and online phases of our attack require finding bit lo-
cations that are vulnerable to Rowhammer attack. Since the bit
flip frequency depends heavily on how flippy a DRAM chip is, we
evaluate our attack on different DRAM chips from both DDR3 and
DDR4 memory profiles. We have taken 14 DDR3 memory profiles
from [41], and we generated the remaining 6 memory profiles on
our DRAM chips. In total, we have analyzed 20 DRAM chips. The
results are summarized in Table 1. In the last column, we can see
the probability of finding at least one flip in a 32-bit integer after
profiling 0.1% of the total memory. To calculate this probability, we
first find =0E6 , the average number of bit flips that land on a 32-bit
variable for 256 possible page offsets. Then, we calculate the prob-
ability of having a successful attack with a single flippy page by
dividing the average flip count, =0E6 by the total number of flippy
pages,=5 ;8??~ . Finally, for a stealthy attack, we assumewe only use
0.1% of the total memory size, #?064B . The final fault probability

is calculated as ? 5 0D;C = (1− (1−=0E6/=5 ;8??~)
#?064B/1000) × 100.

While probabilities are over 90% for most DRAM chips, it is impor-
tant to note that other factors affect the probability of seeing a flip
in the target variable of an actual process, including the probability
that the process gets loaded into the flippy page in the first place.

10 ATTACKS – INJECTING FAULTS INTO
PROGRAMS

Our attacks require finding vulnerabilities in the code we callMay-

hem gadgets. Mayhem gadgets are pieces of code with security-
critical logic that can be corrupted and bypassed by a Rowhammer
attack. It generally consists of a stack variable being set to an ini-
tial value, then changed depending on the program flow, and being
evaluated as being not equal to a certain value as illustrated in List-
ing 4. We can define an integer stack variable auth as equal to zero

Brand Serial Number
Size
[GB]

?5 0D;C

[%]

D
D
R
3

Corsair CMD16GX3M2A1600C9 16 99.99
Corsair CML16GX3M2C1600C9 16 99.99
Corsair CML8GX3M2A1600C9W 8 99.99
Corsair CMY8GX3M2C1600C9R 8 97.26
Crucial BLS2C4G3D1609ES2LX0CEU 8 72.34
Geil GPB38GB1866C9DC 8 99.95

Goodram GR1333D364L9/8GDC 8 57.47
GSkill F3-14900CL8D-8GBXM 8 90.44
GSkill F3-19200C10-8GBZHD 8 99.99
GSkill F3-14900CL9D-8GBSR 8 88.76
Hynix HMT351U6CFR8C-H9 8 99.77
V7 V73T8GNAJKI 8 45.17
PNY MD8GK2D31600NHS-Z 6 92.58

Integral IN3T4GNZBIX 4 79.19
Samsung M378B5173QH0 4 69.67
Samsung M378B5773DH0 2 99.69

D
D
R
4

Corsair CMU64GX4M4C3200C16 64 99.99
Corsair CMK32GX4M2B3200C16 32 99.98
GSkill F4-3600C16D-16GVKC 16 99.99
Crucial CT8G4DFD824A.C16FF 8 90.47

Table 1: The probability of flipping at least one bit in a 32-bit

integer calculated on 16 different DDR3 chips and 4 DDR4

chips per profile (128 or 256MBs). In our setup, it takes 95

minutes to profile a 128 MB on DDR3 and 480 minutes to

profile 256MB on DDR4 chips.

Listing 4: Returns AUTH_SUCCESS if password is correct

AUTH_FAILURE otherwise.

1 // Gadget

2 int auth = 0;

3 //password check code

4 if(auth != 0)

5 return AUTH_SUCCESS;

6 else

7 return AUTH_FAILURE;

initially, then after a password check (which would set auth to 1
if entered correctly), check if the variable is not equal to zero. We
would consider this example a Mayhem gadget because any bit flip
in the auth variable would result in it being not equal to 0, thus
passing the authentication. It would be better for security-related
code to require that code be equal to a certain value rather than
check if it is not equal to a certain value.

10.1 Bypassing SUDO Authentication

sudo is a process in Linux-based operating systems that stands for
Super User Do. It allows a user to obtain root access to reading,
writing, and executing protected files given they enter the correct
password. Breaking the functionality of sudo is a textbook privi-
lege escalation attack and can be devastating to systems that hide
crucial infrastructure behind the root password. The system ad-
ministrator sets a root password that is stored and hashed on the
system, and when a user enters a password, the hashes of the two
passwords are compared, and if they match, root access is granted
to the user. This is seen in the code sample given in Listing 5.

A fault injection attack has been proposed on the sudo program
before using a different technique [16] that requires a specific bit

9

Listing 5: Password authentication function in sudo. Returns

AUTH_SUCCESS if password is correct AUTH_FAILURE otherwise.

1 int sudo_passwd_verify(...) {

2 char des_pass[9], *epass;

3 char *pw_epasswd = auth->data;

4 size_t pw_len;

5 int matched = 0;

6 ...

7 epass = (char *) crypt(pass, pw_epasswd);

8 if (epass != NULL) {

9 if (HAS_AGEINFO(pw_epasswd, pw_len)

10 && strlen(epass) == DESLEN)

11 matched = !strncmp(pw_epasswd, epass, DESLEN);

12 else

13 matched = !strcmp(pw_epasswd, epass);

14 }

15
16 explicit_bzero(des_pass, sizeof(des_pass));

17
18 debug_return_int(matched ? AUTH_SUCCESS

19 : AUTH_FAILURE);

20 }

flip. The researchers found areas in the sudo binary where a bit
flip could result in an opcode change which could result in privi-
lege escalation. The researchers found a total of 29 bits that could
be flipped, resulting in privilege escalation. An opcode flip requires
high precision; once a page with flippy bits is found through the
Rowhammer profiling stage, a flippy bit needs to be located in
the correct position within the page. Flip a bit that is a single bit-
distance away from the target will result in a broken sudo program
and may require up to a system reboot. In contrast, our attack on
the Mayhem gadget code works if any bit in the matched variable
is flipped, consisting of 4 bytes or 32 bits for the matched variable
alone.

After running the sudo experiment for 10 hrs 34 minutes, we
saw a total of 11 successful attacks where we gained root access.
This amounts to an average of about an hour of profiling, as seen
in Table 2, to see a successful attack. Additionally, we see that the
total online time is less than an hour to see the 11 flips, so a total of
5 minutes of hammering on average on the sudo program itself to
see a flip. The time between successful attacks occasionally varied
- sometimes we would see 2-3 attacks in a 15-20 minute window of
profiling. Other times it may take up to a few hours. We speculate
this to be due to where the process is being placed in memory, as
some areas of the DRAMbanksmay bemore flippy than others due
to manufacturing defects. We also noted that of the 5334 attacks,
we saw 1989 attacks where the target variable was placed correctly
in the flippy page. This is a bait-page success rate of about 37%.

Wewere initially concerned that the Rowhammerwould flip too
many bits in the stack of the process that it would be unable to fin-
ish execution. While we did find that it was flipping bits in other
variables other than matched unintentionally, the program still ex-
ecuted successfully, and when matchedwas flipped we gained root
access. Fortunately, stability did not become an issue in our exper-
iments. The results of the experiment demonstrate the novel at-
tack on stack can enable privilege escalation by flipping bits in the
stack.

Listing 6: Password authentication function inOpenSSH.Re-

turns 1 if the password is correct and 0 otherwise.

1 int mm_answer_authpassword(...){

2 char *passwd;

3 int r, authenticated;

4 ...

5 authenticated=options.password_authentication

6 && auth_password(ssh, passwd);

7 ...

8 if ((r=sshbuf_put_u32(m, authenticated)) != 0)

9 fatal_fr(r, "assemble");

10 ...

11 return (authenticated);

12 }

Listing 7: Password authentication function in OpenSSH.

Tries to authenticate the user using password. Returns true

if authentication succeeds.

1 int auth_password(...){

2 Authctxt *authctxt = ssh->authctxt;

3 int result, ok = authctxt->valid;

4 ...

5 if (*password == '\0' && options.permit_empty_passwd == 0)

6 return 0;

7 ...

8 result = sys_auth_passwd(ssh, password);

9 if (authctxt->force_pwchange)

10 auth_restrict_session(ssh);

11 return (result && ok);

12 }

10.2 Bypassing OpenSSH Authentication

To demonstrate the extent of the new attack surface that our at-
tack work enables, we implement the attack on SSH protocols. SSH
(Secure Shell Protocol) is an application layer protocol that allows
secure remote user login, command execution, and other remote
network operations such as TCP port forwarding, tunneling, and
file transfer. SSH protocol works in a client-server model. Public-
key encryption is used for authenticating the client and the server
to each other. After the authentication phase, the transferred data
is secured using symmetric key encryption schemes, such as AES.
Several libraries implement SSH protocol. OpenSSH is one of the
most popular implementations of SSH protocol. Several attacks on
OpenSSH have been shown to steal RSA session keys [28].

When the server program starts, it constantly monitors the in-
coming connections request to port 22 by default. This monitoring
is achieved in an infinite while loop. When the server gets a con-
nection request from a client with a given username and password,
a chain of functions is called to check if the provided password is
correct. Here, wemention the twomost important ones thatwe can
use for our attack. The first function is mm_answer_authpassword,
and the second function is auth_password which is called by the
first one. We show the truncated versions of these functions in
Listing 6 and 7. Within these two functions, there are two differ-
ent local variables that carry the information regarding if the user
will be authenticated later on.

10

In function mm_answer_authpassword, authenticated flag is
set if the auth_password returns 1 in line 5 and then returned. Af-
ter being returned, the return value is checked if it equals 1. The
client is authenticated, and if the condition is met and the SSH ses-
sion starts. Otherwise, the client is asked to enter the password
again. If the correct password is not given in three trials, the client
has to send the connection request again. Here, the authenticated
flag is stored in the stack memory of the program and, therefore,
in DRAM, and a potential target for our attack. If we flip the least
significant bit of this 32-bit integer value after line 5, we see that
the client is authenticated regardless of the password value, and re-
mote shell access is given. However, flipping other bits other than
the least significant bit results in authentication failure, even if the
password is correct.

The other target for our attack is the result flag in auth_password
function. It is initialized to 0 in line 3 and set to 1 in line 5 if the
password is correct. Note that the result flag is given to a logical
and operation with ok flag. ok flag is set to 1 if username is valid.
Therefore, as long as the result is a nonzero value, the return
value would be 1. This logic increases the changes of our attack
since as long as we flip any bit of the 32 bits of the result vari-
able, we can successfully bypass the password authentication.

Table 2 shows the averages of a successful attack on the result
variable in SSH. We observed that over the course of about one
and a half hours, we saw two total successful logins into the SSH
server without the correct password, whichwould be an average of
45minutes, as seen in Table 2. This required a total of 11 minutes of
online time, for an average of about 6 minutes of hammering SSH
per successful attack. In order to complete the attack, we found
1025 memory pages in the system with flippy bits. We also saw
that of the attacks, 412 out of 1025 released the correct number of
bait pages such that the target variable of SSHwas placed correctly
in the flippy row. This is a bait-page success rate of about 40%.

10.3 Attack on OpenSSL Security Checks Stored
in Stack

We experiment with a simple OpenSSL process where we target
a security check variable. At the end of the ECDSA sign setup
method, a security check determines if a variable called ret is not
equal to zero. If the variable is equal to zero, it means that a secu-
rity check failed and a jump occurred past where the variable is
set to 1, indicating all security checks passed. A successful secu-
rity bypass would hammer the security variable in the stack and
force it to be 1 regardless of if it made a jump or not. This could
potentially be used in conjunction with a Rowhammer attack that
targets dynamic memory.

From Table 2 we can see that there is an average offline time of 1
hr 45 mins, and an average online of 7 minutes. This required only
14minutes of hammering onOpenSSL itself. During profiling, 1372
pages were found to be flippy, and 277 of them were correctly uti-
lized by having the target security variable placed in them during
the attack stage, a resulting bait-page success rate of about 20%.

Category SUDO OpenSSH OpenSSL

Total Time 1 hr 9 mins 45 mins 1 hr 45 mins
Online Time 5 mins 6 mins 7 mins
Flippy Pages 485 513 686
Correct Baiting 181 206 139

Table 2: Results from the SUDO, OpenSSH and OpenSSL experi-

ments showing offline time and online time, and the num-

ber of flippy pages found, as well as the number of attacks

with the correct number of bait pages released

11 VULNERABILITY ANALYSIS

11.1 RSA Bellcore Attacks

The early work by Boneh et al. [3] popularly referred to as Bellcore
attacks, demonstrated the importance of checking for errors in
cryptographic implementations in a CRT-based RSA implementa-
tion. The first mitigation against Bellcore attacls on OpenSSL was
released in 2001 and is shown in Listing 8 6 The current OpenSSL
implementation performs a check operation to find if an error oc-
curred after the fast CRT-based RSA exponentiation. If an error is
detected, the code runs a slower (non-CRT based) exponentiation
to compute the signature, thus preventing the possibility of initiat-
ing the Bellcore attack. The check mechanism involves recomput-
ing the message using the signature and public key. Recomputed
message is later subtracted from the original message to check if
both are the same message. If the result is zero, it means the mes-
sages match and the exponentiation is computed correctly. The
zero check function can be seen in line 17 in Listing 8.

For a successful attack, the first step is to create a fault in one
of the partial CRT-based RSA computations. Then, another fault
is introduced in the check mechanism to trick the code into think-
ing the CRT-based RSA exponentiation has been calculated cor-
rectly7. This is achieved by launching a stack attack on the func-
tion �#_8B_I4A> . When line 17 calls for �#_8B_I4A> function, the
result of the zero check is returned using the EAX register. We can
force the process to halt and put the result on the stack. By us-
ing Rowhammer, we can manipulate the variable once it is on the
stack. When the return value is anything other than zero, the if
case will be executed, giving the appearance that the CRT-based
exponentiation was computed correctly.

11.2 Bypassing MySQL Authentication

MySQL is the most popular open-source database management sys-
tem [39], which is commonly used by many organizations and
websites in all industries from Defense & Government to Social
Networks including US Navy, NASA, Twitter, Facebook, LinkedIn,
and Bank of America[33].

We found a Mayhem gadget 8 given in Listing 9 in the source
code of MySQL server that is used for authenticating a client with a
password. The password check happens between line 3 and 7 and
the result is stored in fast_auth_result. Whenwe simulate a 0 to

6https://github.com/openssl/openssl/commit/1777e3fd5eac0e491bb16a0bb37f4b0f298e6486
7The probability of both faults going through will be low, however Bellcore requires
only one faulty sample to succeed.
8https://github.com/mysql/mysql-server

11

https://github.com/openssl/openssl/commit/1777e3fd5eac0e491bb16a0bb37f4b0f298e6486
https://github.com/mysql/mysql-server

Listing 8: Error checking in OpenSSL ModExp

1 static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa

, BN_CTX *ctx){

2 ...

3 if (rsa->e && rsa->n) {

4 if (rsa->meth->bn_mod_exp == BN_mod_exp_mont) {

5 if (!BN_mod_exp_mont(vrfy, r0, rsa->e, rsa->n, ctx,

6 rsa->_method_mod_n))

7 goto err;

8 } else {

9 bn_correct_top(r0);

10 if (!rsa->meth->bn_mod_exp(vrfy, r0, rsa->e, rsa->n,

ctx,

11 rsa->_method_mod_n))

12 goto err;

13 }...

14 if (!BN_sub(vrfy, vrfy, I))

15 goto err;

16 if (BN_is_zero(vrfy)) {

17 bn_correct_top(r0);

18 ret = 1;

19 goto err; /* not actually error */

20 } ...

21 }

Listing 9: MySQL password authentication. Tries to authenti-

cate the client using authorization_id and scramble. The au-

thentication succeeds if fast_auth_result.first is false.

1 static int caching_sha2_password_authenticate(...){

2 ...

3 std::pair<bool, bool> fast_auth_result =

4 g_caching_sha2_password->fast_authenticate(

5 authorization_id, reinterpret_cast<unsigned char *>(

scramble),

6 SCRAMBLE_LENGTH, pkt,

7 info->additional_auth_string_length ? true : false);

8 if (fast_auth_result.first) {

9 if (vio->write_packet(vio, (uchar *)&

perform_full_authentication, 1))

10 return CR_AUTH_HANDSHAKE;

11 } else {

12 if (vio->write_packet(vio, (uchar *)&fast_auth_success, 1))

13 return CR_AUTH_HANDSHAKE;

14 if (fast_auth_result.second) {

15 const char *username =

16 *info->authenticated_as ? info->authenticated_as : "";

17 }

18 return CR_OK;

19 }

1 flip on fast_auth_result.first in line 8, we observe that the
client is authenticated even with an incorrect password. Note that,
unlike the previous attacks, the target variable requires single-bit
precision; hence, the attack is harder to achieve using Rowhammer.

12 END-TO-END ATTACK EXAMPLE

The effectiveness of this attack by demonstrated by deploying a
client/server signature verification via OpenSSL. Note that this ex-
ample does not use signals or signal handlers for synchronizing the
attacker and the victim but rather uses the concept of a blocking
window inherent to the client/server signature verification process
to ensure the attacker hammers at the right time. The attacker is as-
sumed to be colocated with the client and will hammer the victim

client’s high-level signature verification process forcing it to inter-
pret a faulty signature as valid. This is in the context of a man-in-
the-middle attack, where an attacker is trying to trick a client into
thinking a server is the authentic target they are trying to connect
to.

In the typical scenario, the client will attempt to connect to the
server and will send a ClientHello message to the server. The
server will respond with a ServerHello message, which includes
the server’s public key and a signature of the handshake. The client
will then verify the signature using the server’s public key. If the
signature is valid, the client will assume that it is safe to send sen-
sitive information to the server. If the attacker can flip a bit in the
signature verification process, the client will think the signature is
valid and will send sensitive information to the attacker.

In Figure 10, we see the typical scenario where the client con-
nects to the server, sends amessage and receives themessage signed
by the server, and is able to authenticate the server. Importantly,
the client is vulnerable to the Rowhammer attack during the phase
while it is waiting for a response from the server. This connection
phase can take time (in the order of milliseconds) and is ultimately
controlled by the server, and therefore, the attacker can hammer
the client’s memory during this phase.

Client

Client

Server

Server

ClientHello

ServerHello (includes pubkey + signed messaged)

Verify signature using pubkey

Client sends sensitive

info if sig verification

passes

Sends sensitive info (signature valid)

Figure 10: Typical scenario where the client connects to the

server, sends a message and receives the message signed by

the server and is able to authenticate the server.

In Figure 11, we can see the attack scenario. The attacker capi-
talizes on the fact that the client is vulnerable to Rowhammer dur-
ing the connection phase. The attacker acts as both the server and
is colocated with the client. The attacker responds to the clients
ClientHellowith a ServerHellomessage, which includes the at-
tacker’s public key and a signature of the handshake. The client
will then verify the signature using the attacker’s public key. If
the attacker can flip a bit in the signature verification process, the
client will think the signature is valid and will send sensitive in-
formation to the attacker. Theoretically, The attacker can then for-
ward the message to the real server and receive the response. The
attacker can then forward the response to the client, and the client
will think it is communicatingwith the real server, otherwise known
as a man-in-the-middle attack.

This full attack scenario consists of 3 steps:

12

Client

Client

Fake Server

Fake Server

Rowhammer

Attack ServerHello

(includes pubkey + signed messaged)

Verify signature using pubkey

Attacker causes bit flip

bypassing signature

verification process

Sends sensitive info

(believing signature valid)

Hammering

Attacker

ClientHello

Hammering

Attacker

Figure 11: Attack scenario where the attacker acts as both

the fake server and colocated with the client.

Listing 10: Client code that connects to the server and sends

a message to be signed. It is vulnerable to the Rowhammer

attack during the connection phase.

1 int pass=0;

2 // Create client socket

3 client_fd = socket(AF_INET, SOCK_STREAM, 0);

4 ...

5 // Connect to server

6 connect(client_fd, (struct sockaddr *)&server_addr, sizeof(

server_addr));

7 // Send a message to the server

8 unsigned char message[32] = "message";

9 send(client_fd, message, sizeof(message), 0);

10 ...

11 while ((bytes_received = recv(client_fd, buffer, sizeof(buffer)

, 0)) > 0){

12 memcpy(sig_buf + sig_len, buffer, bytes_received);

13 sig_len += bytes_received;

14 }

15 // Deserialize the signature

16 const unsigned char *pp = sig_buf;

17 ECDSA_SIG *signature = d2i_ECDSA_SIG(NULL, &pp, sig_len);

18 ...

19 // Verify the signature

20 if (verify_message(message, sizeof(message), signature,

ec_key)==SUCCESS){

21 pass = 1;

22 }

• Step 1:The client connects to the attacker and sends a ClientHello
message.

• Step 2: The attacker sends a ServerHellomessage to the client,
which includes the attacker’s public key and a signature of the
handshake.

• Step 3: The client will then verify the signature using the at-
tacker’s public key. If the attacker can flip a bit in the signature
verification process, the client will think the signature is valid
and will send sensitive information to the attacker.

12.1 Taking advantage of IP Sockets for
Synchronization

This attack does not require any degradation or other synchroniza-
tion techniques to time the bit-flip attack on the client. This is be-
cause the attacker is controlling the time that the verification pro-
cess takes, and thus can simply wait for the bit flip to occur before
sending the response to the client.

Listing 11: Client code that uses the pass variable to deter-

mine if the signature is valid.

1 // remove sensitive data from memory

2 EC_KEY_free(ec_key);

3 ECDSA_SIG_free(signature);

4 ...

5 if (pass != 0)

6 {

7 fprintf(stdout, "Server Authenticated\n");

8 fflush(stdout);

9 }

In Listing 10 we see that the client has the ability to verify a sig-
nature based on the public key. It keeps the state of the verification
process in the variable pass. The pass variable is set to 1 if the sig-
nature is valid, and 0 otherwise. During the connection phase, the
Rowhammer attacker can attack the pass variable and flip a bit to
make the client think the signature is valid.

In Listing 11 we can see that pass is used to verify if the server
is authenticated. If pass is not 0, then the server is authenticated.
The attacker can flip a bit in the pass variable to make the client
think the server is authenticated regardless of the TLS signature
verification process executed previously.

Just as with the previous experiments, this full attack was con-
ducted on a systemwithUbuntu 20.04.01 LTSwith 5.15.0-58-generic
Linux kernel installed. The systemuses an Intel Core i9-9900KCPU
with a Coffee Lakemicroarchitecture.We used a dynamic clock fre-
quency rather than a static clock frequency to improve the practi-
cality of the attack.

12.2 Flipping a Register Value Pushed to Stack

The high level source code for the OpenSSL signature verification
can be modified to seemingly make it more difficult to attack with
Rowhammer. We can force pass to go to a register with the follow-
ing C code from Listing 12.

Listing 12: The pass security variable is stored in a register

instead of stack

register int pass asm("rbx") = 0;

It is a common practice by compilers that register space is used
by default when possible to increase performance, but the C code
in Listing 12 makes it explicit. After assigning pass to register rbx,
the code behaves the same, but during the blocking window when
OpenSSL is waiting to receive data from the server, register rbx
is pushed to stack where it can be attacked. This is also common
practice to maximize the utilization of registers which are a limited
resource.When the data is popped off the stack after receiving data
from the server, if it has been corrupted by Rowhammmer and that
corrupted data is then put into the register.

12.3 Results from End-to-End Attack

We were able to successfully force the client to misauthenticate
the digital signature sent by the server. Table 3 summarizes the re-
sults. It is notable that the results for attacking the variable in the

13

Category Stack Register

Total Time 27 mins 36 mins
Online Time 20 mins 31 mins
Total Flippy Pages 447 402
Total Attacks w/ Correct # of Bait pages 104 105

Table 3: Results from the end-to-end attack on code using

OpenSSL client/server signature verification

stack, and attacking it when it is pushed from a register are com-
parable from a practical standpoint. Also note that after finding a
flippy location in memory, the stack variable or register variable
was loaded into the correct address 23% and 26% of the time re-
spectively. Based on these findings, we can conclude that Register
variables are no longer safe against Rowhammer.

13 COUNTERMEASURES

13.1 System Changes to Prevent Rowhammer

One of the most common countermeasures cited is increasing the
DRAM refresh rate. A faster refresh rate will result in worse per-
formance and more power consumption and is not an ideal solu-
tion. Although various row refresh methods have been proposed
to reduce the overhead such as parallel [1], and probabilistic row
refresh [48], they are not yet available for use in consumer systems.

One possibility is Hidden Row Activation (HiRA). HiRA is a
novel technique proposed in [1] which parallelizes row refreshes
for DRAM. It allows a row refresh operation to be hidden in the
background while a row in the DRAM is being accessed or re-
freshed in the same bank. It takes advantage of the fact that differ-
ent rows in the same bank may be connected to different charge
restoration circuitry, allowing for concurrent refreshes. By making
an effort to reduce the latency of refresh operations, HiRA can re-
duce the time window for Rowhammer attacks. HiRA claims to be
able to concurrently refresh 32% of rows in a DRAM concurrently
on 56% of off-the-shelf DRAM chips. However, despite strides in
the direction of more efficient refreshes as a rowhammer mitiga-
tion, HiRA is still in its infancy and is not yet available for use in
consumer systems.

Additionally, [48] proposes a novel and efficient Rowhammer
mitigation by building on existing Probabilistic Adjacent Row Ac-
tivation (PARA) Rowhammer defences by building Discreet-PARA.
Discreet-PARA combines disturbance bin counting, a mechanism
for managing refresh operations on rows likely to be corrupted
by Rowhammer, and PARA-cache, which is a cache that stores the
most recently accessed rows. By tracking accesses and refreshes
to rows, Discreet-PARA can detect and mitigate Rowhammer at-
tacks. Researchers were able to optimize these refresh and access
tracking mechanism to reduce the performance overhead from av-
erages from 10.5%-6.6% to 5.3%-2.6%. Still, this mitigation results in
overhead that may not be ideal for consumer systems.

It was initially thought that Error Correcting Code (ECC) would
be an ample countermeasure to Rowhammer. However, ECC is not
a sufficient countermeasure because it can be defeated with triple

bit flips [9]. ECC is a common feature in servers, but it is generally
not available in consumer DRAMs.

13.2 Tighter, More Precise Logic

We propose a set of countermeasures that can be used against a
Rowhammer attack on the stack of a process. The easiest way to
make an attack more difficult is to tighten the logic of the code and
avoid using if-not-zero conditionals.

In the first example seen in Listing 13, if any single bit in the
matched variable is flipped, the first statement becomes true. The
Rowhammer attack is not always precise, so checking if matched
is not equal to zero allows an attacker to flip any of the 32 bits that
make up matched, and the passwords will seem to match. This is
a very similar gadget to the one we found in the sudo program.

Listing 13: Loose

Logic Suspectable to

Rowhammer Attack

1 if(matched != 0)

2 //passwords match

3 else

4 //passwords don't

match

Listing 14: Tight Logic

Less Suspectable to

Rowhammer Attack

if(matched == 1)

//passwords match

else

//passwords don't

match

In contrast, Listing 14 is safer because Rowhammer is required
to flip only the least significant bit; otherwise, the passwords still
will not match. Requiring security-sensitive variables to be stored
in registers over stack is not an effective countermeasure because,
as seen in Section 8.1, registers can be flushed to memory using
signal interrupts and can still be flipped. The codewe found in sudo
and SSH have vulnerable code that is susceptible to Rowhammer
by changing logic for any flip in the 32-bit variable, while MySQL
requires a least significant bit flip. Additionally, it can be beneficial
to use boolean variables over integers when possible to reduce the
target size.

Additionally, the stack Rowhammer attack can further be pre-
vented by requiring specific patterns for security sensitve checks
so a single bit flip will not result in a security failure. For our exam-
ple with the matched variable, we could require that the variable
be set to a random set of bits that are not all zeros. This would
require an attacker to flip all bits in the variable to that specific
pattern for authentication which is far more difficult than flipping
any single bit. It takes advantage of the fact that rowhammer is a
blunt tool that is often inprecise.

Listing 15: Specific pattern in the matched variable

if(matched == 0x69d61fc8)

//passwords match

else

//passwords don't match

Consider listing 15. This code is far more secure than the previ-
ous examples because it requires a specific pattern in the matched
variable. This pattern is a random set of bits that are not all zeros.
In this case, the attacker would need to flip the matched variable
to 0110100111..., which includes 17 bit flips in precise locations
along the variable. This is more difficult than flipping any single
bit in the variable.

14

13.3 Detecting Rowhammer Gadgets

We believe that Rowhammer gadgets may be an excellent domain
for a machine learning algorithm to find and detect vulnerable
pieces of code using natural language processing. Similar work has
been done using machine learning to detect Spectre gadgets [44].
A dataset of Rowhammer gadgets could be derived from existing
code by simulating Rowhammer flips in stack variables and check-
ing if the process experiences a security failure.

13.4 Responsible Disclosure

We informed the library authors regarding the vulnerabilities we
identified. SUDO will release a series of patches to tighten authen-
tication logic against Rowhammer in v1.9.15.

14 ACKNOWLEDGEMENTS

We thank our anonymous reviewers for their insightful feedback
and Saleh K. Monfared for useful discussions on Linux. This work
was supported by theNational Science Foundation grant CNS-2026913
and in part by a grant from the Qatar National Research Fund.

REFERENCES
[1] Anonymous. Hira: Hidden row activation for reducing refresh latency of off-

the-shelf dram chips, 2022.
[2] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das,

Matthew Hicks, Yossi Oren, and Todd Austin. ANVIL: Software-based pro-
tection against next-generation rowhammer attacks. ACM SIGPLAN Notices,
51(4):743–755, 2016.

[3] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of eliminating errors in cryptographic computations. Journal of Cryptology,
14:101–119, 2015.

[4] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. CAn’t touch this: Software-only mitigation against rowhammer
attacks targeting kernel memory. In 26th USENIX Security Symposium (USENIX
Security 17), pages 117–130, Vancouver, BC, August 2017. USENIX Association.

[5] Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F. Haratsch.
Vulnerabilities in mlc nand flash memory programming: Experimental analysis,
exploits, and mitigation techniques. 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 49–60, 2017.

[6] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Ma-
rina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar,
Jo Van Bulck, and Yuval Yarom. Fallout: Leaking data on meltdown-resistant
cpus. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’19, page 769–784, New York, NY, USA, 2019. Associ-
ation for Computing Machinery.

[7] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detection of cache-
based side-channel attacks using hardware performance counters. Applied Soft
Computing, 49:1162–1174, 2016.

[8] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec
Wolman, and Onur Mutlu. Are we susceptible to rowhammer? an end-to-end
methodology for cloud providers. In 2020 IEEE Symposium on Security and Pri-
vacy (SP), pages 712–728. IEEE, 2020.

[9] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. Exploiting
correcting codes: On the effectiveness of ECC memory against rowhammer at-
tacks. In 2019 IEEE Symposium on Security and Privacy (SP), pages 55–71. IEEE,
2019.

[10] Jonathan Corbet. Defending against Rowhammer in the kernel, October 2016.
https://lwn.net/Articles/704920/.

[11] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and
Fabian Monrose. Isomeron: Code randomization resilient to (just-in-time)
return-oriented programming. In NDSS, 2015.

[12] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano Giuf-
frida, and Kaveh Razavi. SMASH: Synchronized many-sided rowhammer at-
tacks from JavaScript. In 30th USENIX Security Symposium (USENIX Security
21), pages 1001–1018. USENIX Association, August 2021.

[13] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. TRRespass: Exploit-
ing the many sides of target row refresh. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 747–762. IEEE, 2020.

[14] BenGras, Kaveh Razavi, Erik Bosman, Herbert Bos, and CristianoGiuffrida. Aslr
on the line: Practical cache attacks on the mmu. In NDSS, volume 17, page 26,
2017.

[15] IEEE/The Open Group. getchar(3p) — Linux manual page. man7.org, 2017.
POSIX Programmer’s Manual.

[16] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger,
Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. Another flip in the wall
of rowhammer defenses. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 245–261. IEEE, 2018.

[17] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer. js: A
remote software-induced fault attack in javascript. In International conference
on detection of intrusions and malware, and vulnerability assessment, pages 300–
321. Springer, 2016.

[18] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+
Flush: a fast and stealthy cache attack. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 279–299. Springer,
2016.

[19] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest we remember: cold-boot attacks on encryption keys. In CACM,
2008.

[20] Nishad Herath and Anders Fogh. These are not your grand Daddys cpu per-
formance counters–cpu hardware performance counters for security. Black Hat
Briefings, 2015.

[21] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. MASCAT: Stopping mi-
croarchitectural attacks before execution. IACR Cryptol. ePrint Arch., 2016:1196,
2016.

[22] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gulmezoglu,
Thomas Eisenbarth, and Berk Sunar. SPOILER: Speculative load hazards boost
rowhammer and cache attacks. In 28th USENIX Security Symposium (USENIX
Security 19), pages 621–637, Santa Clara, CA, August 2019. USENIX Association.

[23] Michael Kerrisk. sleep(3) — Linux manual page. man7.org, 2023. Linux man-
pages 6.04.

[24] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of dram disturbance errors. ACM
SIGARCH Computer Architecture News, 42(3):361–372, 2014.

[25] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution.
In 40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[26] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp, Nicolas
Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss. Half-double: Hammering
from the next row over. In 31st USENIX Security Symposium: USENIX Security’22,
2022.

[27] Anil Kurmus, Nikolas Ioannou, Nikolaos Papandreou, and Thomas Parnell.
From random block corruption to privilege escalation: A filesystem attack vec-
tor for rowhammer-like attacks. In Workshop on Offensive Technologies, 2017.

[28] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. RAMBleed:
Reading bits in memory without accessing them. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 695–711. IEEE, 2020.

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, andMike Hamburg. Meltdown: Reading kernel memory from user space.
In 27th USENIX Security Symposium (USENIX Security 18), 2018.

[30] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster, Misiker Tadesse
Aga, Clémentine Maurice, and Daniel Gruss. Nethammer: Inducing rowham-
mer faults through network requests. In 2020 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), pages 710–719. IEEE, 2020.

[31] Koksal Mus, Yarkın Doröz, M. Caner Tol, Kristi Rahman, and Berk Sunar. Jolt -
recovering tls signing keys via rowhammer faults. 2022.

[32] OnurMutlu and Jeremie S Kim. Rowhammer: A retrospective. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 39(8):1555–1571,
2019.

[33] MySQL. Mysql customers, 2023. Accessed on 7 February 2023.
https://www.mysql.com/customers/.

[34] NIST. Cve-2022-42961 detail. Oct 2022.
[35] Mathias Payer. HexPADS: a platform to detect “stealth” attacks. In Interna-

tional Symposium on Engineering Secure Software and Systems, pages 138–154.
Springer, 2016.

[36] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. DRAMA: Exploiting DRAM addressing for Cross-CPU attacks. In
25th USENIX Security Symposium (USENIX Security 16), pages 565–581, Austin,
TX, August 2016. USENIX Association.

[37] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and
Herbert Bos. Flip feng shui: Hammering a needle in the software stack. In
25th USENIX Security Symposium (USENIX Security 16), pages 1–18, Austin, TX,
August 2016. USENIX Association.

15

https://lwn.net/Articles/704920/
https://www.mysql.com/customers/

[38] Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer bug to
gain kernel privileges. Black Hat, 15:71, 2015.

[39] IT Solid. Db-engines ranking of relational dbms, 2023. Accessed on 7 February
2023. https://db-engines.com/en/ranking.

[40] Akira Takahashi and Mehdi Tibouchi. Degenerate fault attacks on elliptic curve
parameters in openssl. In IEEE European Symposium on Security and Privacy,
EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019, pages 371–386. IEEE, 2019.

[41] Andrei Tatar, CristianoGiuffrida, Herbert Bos, and Kaveh Razavi. Defeating soft-
ware mitigations against rowhammer: A surgical precision hammer. In Michael
Bailey, Thorsten Holz, Manolis Stamatogiannakis, and Sotiris Ioannidis, editors,
Research in Attacks, Intrusions, and Defenses, pages 47–66, Cham, 2018. Springer
International Publishing.

[42] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano Giuf-
frida, Herbert Bos, and Kaveh Razavi. Throwhammer: Rowhammer attacks over
the network and defenses. In 2018 USENIXAnnual Technical Conference (USENIX
ATC 18), pages 213–226, Boston, MA, July 2018. USENIX Association.

[43] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and Kang G Shin.
Spechammer: Combining spectre and rowhammer for new speculative attacks.
In 2022 IEEE Symposium on Security and Privacy (SP), pages 681–698. IEEE, 2022.

[44] M. Caner Tol, Berk Gulmezoglu, Koray Yurtseven, and Berk Sunar. FastSpec:
Scalable Generation and Detection of Spectre Gadgets Using Neural Embed-
dings. In 2021 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 616–632. IEEE, 2021.

[45] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,
Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. LVI:
Hijacking Transient Execution throughMicroarchitectural Load Value Injection.
In 41th IEEE Symposium on Security and Privacy (S&P’20), 2020.

[46] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clé-
mentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano
Giuffrida. Drammer: Deterministic rowhammer attacks on mobile platforms.
In Proceedings of the 2016 ACM SIGSAC conference on computer and communica-
tions security, pages 1675–1689, 2016.

[47] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
in-flight data load. In S&P, May 2019.

[48] Z. Wang, W. Liu, and Y. Wang. Discreet-para: Rowhammer defense with low
cost and high efficiency. In 2021 IEEE 39th International Conference on Computer
Design (ICCD), pages 1–8. IEEE, 2021.

[49] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custodio, Thomas
Eisenbarth, and Berk Sunar. Jackhammer: Efficient rowhammer on heteroge-
neous fpga-cpu platforms. arXiv preprint arXiv:1912.11523, 2019.

[50] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. One bit
flips, one cloud flops: Cross-VM row hammer attacks and privilege escalation.
In 25th USENIX Security Symposium (USENIX Security 16), pages 19–35, Austin,
TX, August 2016. USENIX Association.

[51] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. Cloudradar: A real-time side-
channel attack detection system in clouds. In International Symposium on Re-
search in Attacks, Intrusions, and Defenses, pages 118–140. Springer, 2016.

16

https://db-engines.com/en/ranking

	Abstract
	1 Introduction
	2 Background
	2.1 Rowhammer Attacks
	2.2 Countermeasures in Crypto Libraries

	3 ASLR
	4 Threat Model for Memory Mayhem
	5 Bypassing Stack ASLR
	6 Exploiting Offset Randomization
	7 Flipping Bits in the Stack and Register Variables
	7.1 Offline Memory Profiling
	7.2 Profiling for Bait Pages
	7.3 Online Attack Phase

	8 Flipping Bits in CPU Registers
	8.1 Forcing Register Eviction to Stack

	9 Experimental Evaluation
	9.1 Experiment Setup
	9.2 Reproducibility of Bit Flips
	9.3 Success Rate of Baiting Method
	9.4 Evaluation on Different DRAM Chips

	10 Attacks – Injecting Faults into Programs
	10.1 Bypassing SUDO Authentication
	10.2 Bypassing OpenSSH Authentication
	10.3 Attack on OpenSSL Security Checks Stored in Stack

	11 Vulnerability Analysis
	11.1 RSA Bellcore Attacks
	11.2 Bypassing MySQL Authentication

	12 End-to-End Attack Example
	12.1 Taking advantage of IP Sockets for Synchronization
	12.2 Flipping a Register Value Pushed to Stack
	12.3 Results from End-to-End Attack

	13 Countermeasures
	13.1 System Changes to Prevent Rowhammer
	13.2 Tighter, More Precise Logic
	13.3 Detecting Rowhammer Gadgets
	13.4 Responsible Disclosure

	14 Acknowledgements
	References

