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ABSTRACT
Over the past years, literature has shown that attacks exploiting
the microarchitecture of modern processors pose a serious threat to
user privacy. This is because applications leave distinct footprints in
the processor, which malware can use to infer user activities. In this
work, we show that these inference attacks can greatly be enhanced
with advanced AI techniques. In particular, we focus on profiling
the activity in the last-level cache (LLC) of ARM processors. We
employ a simple Prime+Probe based monitoring technique to ob-
tain cache traces, which we classify with deep learning methods
including convolutional neural networks. We demonstrate our ap-
proach on an off-the-shelf Android phone by launching a successful
attack from an unprivileged, zero-permission app in well under
a minute. The app detects running applications, opened websites,
and streaming videos with up to 98% accuracy and a profiling phase
of at most 6 seconds. This is possible, as deep learning compensates
measurement disturbances stemming from the inherently noisy
LLC monitoring and unfavorable cache characteristics. In summary,
our results show that thanks to advanced AI techniques, inference
attacks are becoming alarmingly easy to execute in practice. This
once more calls for countermeasures that confine microarchitec-
tural leakage and protect mobile phone applications, especially
those valuing the privacy of their users.
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1 INTRODUCTION
In 2017, more than 2 billion Android devices were usedmonthly [44].
The security and privacy of the applications deployed on these de-
vices are therefore of great relevance. The Android operating system
consequently employs a variety of protection mechanisms. Apps
run in sandboxes, inter-process communication is regulated, and
users have some degree of control via the permission system. The
majority of these features protects against software-based attacks
and logical side-channel attacks. The processor hardware, however,
also constitutes an attack surface. In particular, the shared processor
cache heavily speeds up the execution of applications. As a side
effect, each application leaves a footprint in the cache that can be
profiled by others. These footprints, in turn, contain sensitive infor-
mation about the application activity. Jana et al. [26] showed that
browsing activity yields unique memory footprints that allow the
inference of accessed websites. Oren et al. [36] demonstrated that
these footprints can be observed in the cache even from JavaScript
code distributed by a malicious website. While these attacks have
succeeded based on a solid amount of engineering, the increasing
complexity of applications, operating systems (OS), and proces-
sors make their implementation laborious and cumbersome. Yet,
studying side-channel attacks is important to protect security and
privacy critical applications in the long term. We believe that ma-
chine learning (ML), especially deep learning (DL) techniques such
as convolutional neural networks, assist in making side-channel
analysis significantly more scalable. Deep learning reduces the hu-
man effort by efficiently extracting relevant information from noisy
and complex observations. At the same time, it introduces a new
risk as attacks become more potent and easier to implement in
practice. We demonstrate this risk and compile a malicious Android
application, which, despite having no privileges or permissions, can
infer user activities across application and OS boundaries. With the
app, we are able to detect other running applications with up to
98% confidence. With this information, we focus on activities that
happen within an application. We detect visited websites in Google
Chrome and identify videos that are streamed in the Netflix and
YouTube applications. Those inferences are possible by analyzing
simple last-level cache (LLC) observations of at most 6 seconds
with machine learning algorithms. The entire attack succeeds in
well under a minute and reveals sensitive information about the
mobile phone user. None of the currently employed protection
mechanisms prevent our attack, as the LLC is shared between dif-
ferent processes and can be monitored from user space. Our cache
profiling technique is based on the Prime+Probe attack [45], which
relies on cache eviction to monitor the LLC. Cache eviction, in turn,
requires sets of memory addresses that map to a single cache set.
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In contrast to previous work, we compile these address sets with a
novel algorithm that succeeds even for imprecise timing sources,
random line replacement policies, and without access to physical
memory addresses. This introduces a certain amount of noise in
the cache observations. We counter this effect by applying machine
learning, and in particular deep learning, to the observations. We
also compare the performance of the employed machine learning
techniques. While support vector machines (SVMs) and stacked
autoencoders (SAEs) struggle during classification, convolution
neural networks (CNNs) succeed in efficiently extracting distinct
features and, thus, surpass the other techniques. As CNNs have
recently gained attention in the field of side-channel analysis, we
explain our parameter selection and compare it to related work.
For the implementation of our attack, we neither require the target
phone to be rooted nor the malicious application to have certain
privileges or permissions. On our test device, a Nexus 5X, the An-
droid OS is up-to-date and all security patches are installed. The
malicious code runs in the background, requires no human contri-
bution during the attack, and draws little attention due to the short
profiling phase.

Our Contribution. In summary, we
• propose an inference attack on mobile devices that works
without privileges, permissions, or special OS interfaces.
• find eviction sets with a novel dynamic timing test that works
even with imprecise timing sources, random line replace-
ment policies, and virtual addresses only.
• classify cache observations using machine learning (SVM,
SAE, CNN) and thereby infer running applications, opened
websites, and streaming videos.
• achieve classification rates of up to 98% with a profiling
phase of at most 6 seconds and an overall attack time of well
under a minute.

The rest of the paper is organized as follows: Section 2 provides a
brief background on cache profiling andmachine learning. Section 3
explains the proposed inference attack in detail. Section 4 presents
the results of our experiments followed by a discussion in Section 5.
Section 6 gives an overview of previous work and compares our
results with other techniques. Section 7 concludes our work.

2 BACKGROUND
This section provides a brief introduction to the employed cache
profiling and machine learning techniques.

2.1 Cache Profiling
The cache of modern processors consists of multiple levels. Higher
levels are small and often private to processor cores, while lower
levels are larger and shared among cores. The last-level cache (LLC)
is the last stage before external memory (e.g. RAM). Among gen-
eral purpose processors, set-associative caches are common. These
caches are split into a number of cache sets, each of which contains
a number of cache lines (equal to the associativity). While every
address is deterministically mapped to a cache set, the exact line
the corresponding data will be stored on is chosen by a replacement
policy. ARM-based application processors mostly employ random

selection policies, while Intel x86 processors often implement vari-
ants of least-recently used (LRU). Throughout the cache, data is
stored on fixed-size cache lines of typically 64 bytes.
Prime+Probe. The cache is a resource that is competitively shared
between executing threads. This means that the cache activity of
each thread influences the runtime of all other threads. A malicious
application can alter its cache footprint and time its execution
such that it learns what other applications are executing. This is
the basis for cache attacks and often referred to as cache profiling.
Tromer et al. [45] proposed a prominent profiling technique called
Prime+Probe. In the prime step, the adversary fills one or more cache
sets with own data. This is done by accessing a set of addresses that
all map to the same cache set. This set of addresses is called eviction
set. After a short waiting period, the adversary measures how long
it takes to re-accesses all addresses in the eviction set. If no other
thread placed data in the monitored cache set, this re-access cycle
will be fast. In contrast, if one or more cache lines got replaced in
the meantime, the re-access cycle will trigger line replacements
and, thus, will be slower. As a result, the timing measurements of
the adversary reflect the activity in the cache.

2.2 Machine Learning
The following paragraphs introduce support vectormachines, stacked
autoencoders, and convolutional neural networks.
Support Vector Machines (SVMs). SVMs construct a classifier
by mapping training data into a higher dimensional space, where
distinct features can efficiently be separated. This separation is
achieved with a hyperplane that maximizes the margin between
the classes. A regularization parameter allows a tunable degree of
misclassification while finding the hyperplane.
Stacked Autoencoders (SAEs). An autoencoder (AE) is a type of
neural network that can be trained to reconstruct an input. The
network consists of an encoder function h = f (x ) that extracts dis-
tinct features from the input x and a decoder unit that reconstructs
the original data r = д(h). The network is trained such that the
error between r and x is minimized. Stacked AEs are constructed
by combining multiple AEs sequentially. The idea behind SAEs is
to learn only useful input features instead of learning an exact copy
of the input. With a softmax layer at the end, SAEs can be used as
classifiers for supervised learning.
Convolutional Neural Networks (CNNs). CNNs consist of neu-
rons that are interconnected and grouped into layers. Each neuron
computes a weighted sum of its inputs using a (non-) linear activa-
tion function. Those inputs either stem from the actual inputs to the
network or from previous layers. A typical CNN comprises multiple
layers of neurons. Convolution layers are the core of the CNN. They
consist of filters that are slid over the width and height of the input
to learn any two-dimensional patterns. The activation functions
in the neurons thereby extract distinct features from each input.
For efficiency, the neurons are connected only to a local region of
the input. The depth of the convolution layer defines the number
of filters and the stride controls how fast they are moved over the
input. Pooling layers apply a filter to the input and forward only
the maximum coefficient from every subregion. This reduces the
size of the input and avoids over-fitting, as only the most dominant
features from the convolution layer are passed to the rest of the
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Figure 1: Mapping of virtual memory to cache sets.

network. Dense or fully-connected layers learn additional relations
between the activations of the previous layers. The final layer of the
network is a loss layer with a size of 1 × L, where L is the number
of labels or classes. A back-propagation algorithm decreases the
loss value by updating the weights in the network. For each classi-
fication, the network provides a probability estimate that indicates
the confidence of the model for a predicted class. The sum of all
estimates equals to 1.

3 INFERENCE ATTACK
The threat model of our proposed inference attack assumes that
a mobile device user installs a malicious application from an app
store on Android. This happens regularly, as malicious apps offer
benign functionality to disguise malicious background activities
(e.g. hidden crypto currency mining). The malicious code needed
for our attack operates from user space and does not need any app
permissions. This means that we neither require a rooted phone, nor
ask the user for certain permissions, nor rely on any exploits, e.g.,
to escalate privileges or to break out of sandboxes. Furthermore, we
do not rely on features or programming interfaces that might not
be available on all Android versions. The sole task of our malicious
code is to profile the LLC and classify victim activities with pre-
trained ML/DL models. Once the LLC profiles have been gathered,
the models are queried to infer sensitive information.

3.1 Attack Outline
The proposed inference attack consists of two main phases. In the
training phase, the attacker creates ML/DL models on a training
device that is similar to the target device. Ideally, the processor
and operating system are identical on both devices. The models
are created by recording raw LLC profiles of target applications,
websites, and videos, followed by preparing the feature vectors, and
training the ML/DL algorithms with them. The trained models are
then directly integrated into the malicious application, which is
subsequently published in the app store. In the attack phase, the
malicious app prepares eviction sets for profiling the LLC on the tar-
get device. Subsequently, the LLC sets are profiled in a Prime+Probe
manner and the feature vectors are extracted. Finally, the feature
vectors are classified with the pre-trained models to infer opened
applications, visited websites, and streamed videos. All steps of the
attack phase are lightweight and can be executed in the background
without drawing notable attention.

05611121516...63

cache linecache set

page offsetpage table index /
page frame number

Figure 2: Virtual/physical address and its interpretation.

3.2 Finding Eviction Sets
Once deployed, the first task of the malicious app is to find eviction
sets on the target device. An eviction set is a group of memory
addresses that map to the same cache set. These addresses are
called set-congruent. Figure 1 illustrates the problem of finding set-
congruent addresses and forming eviction sets. The graphic shows
a block of virtual memory that is backed by two fixed-size memory
pages. In the figure, we assume a common page size of 4 KiB. As
soon as an address within the block is accessed, the corresponding
memory content is brought into the processor cache. Since the
cache manages data on fixed-size cache lines, one access will cache
multiple bytes. We assume a common cache line size of 64 bytes.
The illustrated cache is set-associative and holds multiple lines per
cache set. Memory that is brought into the cache is deterministically
assigned to a cache set. For last-level caches, this assignment is
commonly derived from physical addresses that are unavailable to
most user space applications. Figure 2 illustrates the link between
virtual and physical addresses, and how they are interpreted by the
cache. The most significant bits of each virtual address are the page
table index, while the least significant bits are the page offset. A
page size of 4 KiB yields loд2 (4096) = 12 offset bits. The page table
index is used to lookup an entry in the page tables that contains the
page frame number. The page frame number and the page offset
form the physical address. The page offset bits are thereby identical
in both virtual and physical address. The least significant bits of
the physical address are then used by the cache controller for basic
indexing. The lowest bits are used to address a byte on a cache
line, while the subsequent bits determine the cache set in which the
address will be placed. For 1024 cache sets, 10 bits are used as cache
set index. As shown in Figure 2, these bits do not fit entirely within
the page offset (highlighted in gray). Therefore, the exact cache
set cannot be determined from the virtual address, as the most
significant index bits are unknown. This complicates the mapping
of virtual addresses to cache sets and may cause consecutive pages
to map to completely different parts of the cache, as indicated
in Figure 1. Finding eviction sets from user space is therefore a
non-trivial problem. To fully solve it, one must (a) group virtual
addresses according to cache sets, and (b) obtain the correct order
such that group 0 maps to cache set 0 and so on. We refer to this
as an ordered mapping between virtual addresses and cache sets.
In practice, one must obtain physical address bits to derive this
mapping, e.g., by gaining elevated privileges [29] or by exploiting
additional vulnerabilities [14]. Alternatively, it is possible to find an
unordered mapping that only fulfills (a). This can be achieved with
search algorithms that perform simple timing measurements and
thereby find groups of set-congruent virtual addresses. While the
algorithms do not reveal which group corresponds to which cache
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Algorithm 1 Finding eviction sets.
1: T = {}
2: told = 0
3: for i from 1 to n do
4: add (T , i )
5: tT = access (T , r )
6: if (tT − told ) > τjump then
7: E ← {}

8: for all p in T do
9: tp = access (T \{p}, r )

10: if
(
tT − tp

)
> τjump then

11: add (E, p)
12: end if
13: end for
14: report (E)
15: remove (T , E)
16: told = access (T , r )
17: else
18: told = tT
19: end if
20: end for

set, they can be run entirely from user space. In literature, the study
by Vila et al. [48] investigates this type of search algorithms. The
authors give a comprehensive overview of previous approaches, but
limit their evaluation to Intel processors. We discuss approaches
relevant to this work in the following paragraph and refer the
interested reader to this study for further information.

Lipp et al. [29] compile eviction sets from physical addresses
which they obtain from the pagemap file that is present on many
Linux systems. After their work was published, Android restricted
the access to pagemap entries from user space.1 Irazoqui et al. [24]
and Gruss et al. [15] rely on huge pages, i.e. pages with typical sizes
of > 1MiB. Huge pages increase the page offset and thereby reveal
the missing bits that determine the cache set. Oren et al. [36] and
Bosman et al. [4] rely on special page allocation mechanisms in
web browsers and operating systems that simplify the eviction set
search. Genkin et al. [9] build eviction sets from sandboxed code
within a web browser, while only relying on virtual addresses. Yet,
they still require a precise and low-noise timing source to distin-
guish cache hit and miss. In contrast to these previous works, we
propose a search algorithm that neither relies on physical addresses
(whether obtained from pagemap, huge pages, or elsewhere), nor
on certain features of memory allocators, nor on a precise timing
source. Our approach for finding eviction sets is purely based on
virtual addresses and robust against imprecise and noisy timing
sources. In addition, we found our approach to be resilient against
the random line replacement policy implemented in many ARM
application processors.

Algorithm 1 outlines our approach for finding eviction sets. Prior
to execution, we assume that n memory pages have been requested
and are available as a memory pool. Note that we do not pose any
requirements on the memory pages, thus, our algorithmworks with
any page size, including, but not limited to, 4 KiB. Since we want to

1https://source.android.com/security/bulletin/2016-03-01
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(b) Average page access time, tp , used to filter an eviction set from T .

Figure 3: Plots of (a) tT and (b) tp , as used in Algorithm 1.

evict the entire LLC, we need to choose n such that the requested
memory area is large enough to fill it. In our experiments, we
request a memory area that is twice as large as the LLC. This turned
out to be sufficient for deriving all eviction sets. Algorithm 1 iterates
over the allocated memory pages in sequential order. Each unused
page is first added to a temporary eviction set T (line 4). Next, the
first byte of each page in T is accessed and the average time tT
of this access cycle is measured. The parameter r determines how
often the access cycle is repeated. In each cycle, all pages in T are
accessed once. The overall timing is then divided by r to obtain the
average. This is useful to account for imprecise timing sources and
different replacement policies. A detailed discussion of r is given
later in this section. The access time tT is then compared with the
time from the previous loop cycle (line 6), where T was one page
smaller. If the time difference is higher than a threshold τjump , then
there is a systematic contention in a cache set. In other words, the
pages in T entirely fill one cache set and cause a line replacement
in the process. This is illustrated in Figure 3(a), which shows the
average access time tT over an increasing number of pages in T .
As long as no set contention occurs, the average timings increase
steadily. Once a contention happens, the timing peaks. Each peak
in the plot indicates that one cache set is completely filled.

After a set contention is detected, Algorithm 1 iterates over all
pages in T , temporarily excludes one of them from T , accesses this
reduced set, and stores the average access time in tp (line 9). If the
time difference between tT and tp is again bigger than τjump , then
the excluded page p belongs to the eviction set. This is illustrated in
Figure 3(b), which shows the average access time tp for all candidate
pages p in T . As soon as a candidate is part of the eviction set, the
systematic set contention vanishes and the access time tp drops.
Each drop in the plot therefore indicates a member of the eviction
set. Those pages are then added to the final eviction set E, which
is reported on line 14. The entries in E are subsequently removed
from T , before the outer loop continues to add unused pages to
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Algorithm 2 Removing duplicates.

1: F = {}
2: B = {1..m}
3: while notempty (B) do
4: f = pop (B)
5: for s in B do
6: tE = access

( [
onepaдe

(
Ef
)
, Es

]
, r
)

7: if
(
tE > τjump

)
then

8: remove (B, s )
9: end if
10: end for
11: add (F , f )
12: end while

T . Once the outer loop reaches n, the reported eviction sets are
expanded. This procedure is outlined in the following paragraph.
Eviction Set Expansion and Duplicates. Each of them eviction
sets reported by Algorithm 1 contains a list of memory pages. Since
one page fits more than one cache line, we can derive multiple
evictions sets from one E. This is indicated in Figure 1. With 4 KiB
pages and 64-byte cache lines, there are 64 lines on one page. As
memory pages are contiguous physical memory, we know that
those 64 lines belong to 64 consecutive cache sets. Hence, we can
derive 64 adjacent eviction sets from one E (the first being E itself)
by simply adding multiples of 64 to the start address of the pages.
Depending on how large we chose n, it can happen that Algorithm 1
reports more than one eviction set for each cache set. We therefore
need to check all reported eviction sets for duplicates and remove
them. This procedure is outlined in Algorithm 2. It starts by storing
the indices of allm reported eviction sets from Algorithm 1 in the
list B for bookkeeping (line 2). As long as B is not empty, the first
index is removed and assigned to f (line 4). The algorithm then
iterates over all remaining indices s and accesses the corresponding
eviction sets Ef and Es . In particular, one page in Ef and all pages
in Es are accessed consecutively, and the whole process is repeated
r times. If the average timing tE of these access cycles is larger than
a threshold τjump , then Ef and Es map to the same cache set. If
this happens, the affected index s is removed from B (line 8), and
the iteration continues. After all eviction sets have been tested, the
index in f is added to the final list F (line 11). With each loop, B is
shrinking as duplicate eviction sets are removed. Once B is empty,
F contains the list of unique eviction set indices.
Timer Precision and Noise. Both algorithms 1 and 2 are designed
to compensate imprecise and noisy timing sources. Although previ-
ous works [9, 40] suggest that accurate timers can be crafted even in
environments that restrict access to high-precision timing sources,
this engineering effort can be saved here. We believe this adds to
the practicality of our attack. The precision and noise compensation
in our algorithms is done by tuning the parameter r , as well as the
threshold τjump . r defines the number of access cycles, i.e., how
often a selection of memory pages is accessed. τjump defines how
the timings of these access cycles are evaluated. In Algorithm 1, the
accesses on line 5 will typically cause cache hits until the gathered
pages trigger a systematic set contention. The difference between
tT and told will therefore be in the order of tmiss , where tmiss

is the duration of a cache miss. Similarly, the accesses on line 9
will cause cache hits, if the candidate page p is part of the eviction
set. In this case, the difference between tT and tp will again be
around tmiss . Therefore, τjump can initially be set slightly smaller
than tmiss . Adjustments can be made subsequently based on ex-
perimental data. The choice of r depends on the precision of the
timer and the measurement quality. In general, r should be set
such that r · tmiss is larger than the precision of the timer. It can
be increased further, if high levels of noise are encountered, e.g.,
due to high system load. The choices for τjump and r also hold
for Algorithm 2, where the accesses on line 6 will typically cause
cache hits until Ef and Es are duplicates. When this happens, a
systematic set contention will occur, as the chosen page from Ef
will be evicted by Es . In our experiments, we set r between 900
and 1000, and τjump to 500. The timer available on our test device,
a Nexus 5X, provides a precision of 52 ns. This corresponds to ap-
proximately 100 clock cycles. In many related attacks (e.g. [49]),
where timers typically have clock cycle accuracy, this rather low
resolution would already introduce difficulties. In our approach, we
simply tune r to compensate the low resolution.

Line Replacement Policies.We can also use r to compensate the
effects of replacement policies. This is because the parameter r
causes repetitive accesses to cache lines, which signals the cache
controller that the accessed lines are of heightened interest and
should not be replaced. For least-recently-used (LRU) policies, this
is obviously beneficial, as unrelated cache activity will less likely
interfere with the eviction set finding. But also random replacement
policies benefit, because averaging over r access cycles attenuates
the effect of unintended line replacements that happen due to ran-
dom line selection. Our experiments outlined in Section 4 show
that the choice of r as stated above is sufficient to compensate the
effects of the random line replacement found on our test device.

Implementation and Limitations. Only few requirements have
to be satisfied to find eviction sets with our approach. Memory
must be allocated and accessed, and the accesses must be timed.
Memory pages can be of arbitrary size and the timing source can
be coarse-grained. This allows our algorithm to be implemented in
user space and, thus, in a plethora of environments beyond mobile
devices, e.g., desktop computers and cloud servers. Even sandboxes
and virtual machines are typically no obstacle, enabling remote
attacks, e.g., from JavaScript. The limitation of our approach is that
the exact mapping of eviction sets to cache sets remains unknown.
However, this is not a deficiency but a direct consequence of not
knowing physical addresses. This choice makes our approach more
practical and, thanks to the application of machine learning, still
allows successful inference attacks.

Performance. We evaluated algorithms 1 and 2 on our test device
with the parameters stated previously. The targeted last-level cache
is 16-way set-associative and contains 1024 cache sets. It imple-
ments a random replacement policy and features 64-byte cache
lines. Requested memory pages have a standard size of 4 KiB. Based
on 1000 evaluation runs, algorithms 1 and 2 successfully yield all
eviction sets with an average runtime of 20 seconds. Note that dur-
ing our inference attack, eviction sets must be found only once and
remain unchanged until the malicious app is restarted.
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3.3 Post-processing and Feature Vectors
With the eviction sets obtained from algorithms 1 and 2, the last-
level cache can be profiled in a traditional Prime+Probe [45] manner.
This is done by filling each cache set with the corresponding evic-
tion set (prime), before re-filling it immediately afterwards (probe).
High levels of activity in the cache set will increase the probing
time, whereas low levels will keep it low. Each probing time consti-
tutes ameasurement sample of the cache set. In our experiments, we
measure nT samples per cache set. The overall activity profile of the
last-level cache, in short LLC profile, consists of the samples of all
cache sets. Before these samples are classified by the machine learn-
ing algorithms, they are post-processed and converted to feature
vectors. The following list outlines the post-processing steps.

(1) Elimination of timing outliers with a threshold τO . All out-
liers are replaced with the sample median. In our experi-
ments, τO is set to 5 µs .

(2) Conversion of timing samples to binary representation. A
threshold τH decides whether a sample value is low or high.
In our experiments, τH is set to 750 ns.

(3) Sample compression by grouping high samples. Bursts of
consecutive high samples are reduced to a single high value.

The removal of outliers reduces noise in the measurements. The
binary representation simplifies interfacing with the machine learn-
ing algorithms and distills cache activity to two categories: high and
low. Sample compression reduces data complexity while keeping
the essential information of whether there was high or low activity.
It also alleviates the effect of random replacement policies, as it
compensates self-eviction during the probe step. From the post-
processed measurement samples we derive three different feature
vectors that are outlined in the following paragraphs.

Unordered Feature Vector. This feature vector is called unordered,
because the exact mapping of eviction sets to cache sets is unknown,
as explained in Section 3.2. This means that it is unclear which
region of the cache a given sample stems from. However, it is
possible to determine which region of the memory page a sample
belongs to, because the addresses in a given eviction set share
a common page offset. We leverage this observation to further
compress the feature vector and reduce training complexity. In
particular, we sum up the high samples of all cache sets that belong
to the same page offset. With 4 KiB pages and 64-byte cache lines
there are 64 distinct page offsets. Thus, the final feature vector
contains 64 values.

FFT Feature Vector. For this feature vector, the post-processed
measurement samples are converted with a fast Fourier transforma-
tion (FFT). The purpose of the FFT is to further reduce measurement
noise, which has been pointed out by previous work [19, 36]. The
FFT turns the nT time-domain samples per cache set into nT

2 fre-
quency components (excluding the DC component). The employed
sampling rate nS is derived by dividing 1 second by the duration of
one Prime+Probe cycle. We reduce the complexity of the nT

2 fre-
quency components by compressing them to nF final components
with a sliding window. These final components are again summed
up over all cache sets that belong to the same page offset. Thus, the
final feature vector contains nF · 64 values.

Ordered Feature Vector. This feature vector is different from the
previous two. It is called ordered, because the exact mapping of evic-
tion sets to cache sets is assumed to be known (e.g. from pagemap
entries). This implies that additional attack steps have been per-
formed (e.g. privilege escalation). Having the exact mapping, the
cache sets are profiled in ascending order. But instead of group-
ing samples per page offset, the feature vector is constructed by
concatenating the sum of high samples for each cache set. Thus,
the final feature vector contains as many values as there are sets
in the cache. The purpose of the ordered vector is to evaluate the
performance of the previous two feature vectors. In the following
Section 4, it is used to mount a comparison attack that captures
cache activities with high resolution, but at the cost of additional
attack steps.

4 EXPERIMENT SETUP AND RESULTS
In total, we conduct three experiments in which our malicious app
detects running applications, visited websites, and streamed videos.
The attack targets are given in Appendix A. For each machine learn-
ing algorithm, we build a multi-class classifier. 90% of the measured
LLC profiles are thereby selected randomly for the training phase,
while the rest of the data is chosen to evaluate the efficiency of the
trained classifier. This 10% holdout approach yields the classifica-
tion rates that are presented in this section. The rates are thereby
based on the most likely label. Throughout the experiments, we
observed that 10-fold cross-validation results are consistent with
a 10% holdout approach. We also evaluated our classifiers against
unknown inputs accounting for activity the models have not been
trained with. In total, we collected more than 800 GB of cache
profiling data to evaluate our inference attack.

4.1 Target Device
We use a Google Nexus 5X with Android v8.0.0 for our experiments.
It features four ARM Cortex-A53 and two ARM Cortex-A57 pro-
cessor cores. The malicious code runs on one of the A57 cores and
profiles the LLC in the background. The LLC on the A57 core cluster
contains 1024 cache sets. The target applications are launched and
transition automatically to the A57 processor cluster. This is be-
cause the scheduler assigns resource-hungry processes (e.g. browser
or multimedia applications) to the A57 cores to leverage their high
performance. During all experiments, the system was connected
to the campus wireless network and background processes from
the Android OS and other apps were running. The timing source in
our malicious app is the POSIX clock_gettime system call, which is
available on all Android versions as part of the Bionic standard C
library [3]. For website inference, we run Google Chrome and for
video inference, we run the Netflix and YouTube apps.2

4.2 ML/DL Configuration
The following paragraphs discuss the parameter selection of the
machine learning algorithms and provide further details about their
usage. SVM and SAE classification is implemented with the help
of LibSVM [5], whereas CNN classification is done using custom
Keras [7] scripts together with the Tensorflow [1] GPU backend.

2Chrome v64.0.3282.137, Netflix v6.16.0, YouTube v13.36.50 .
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The CNN is trained on a workstation with two Nvidia 1080Ti (Pas-
cal) GPUs, a 20-core Intel i7-7900X CPU, and 64 GB of RAM.
SVM. The ordered and unordered feature vectors are classified with
a linear SVM, while a non-linear SVM is used for the FFT feature
vector. This is because the FFT is computed with non-linear func-
tions (cos, sin) and the labels are linearly increasing for the classes.
This choice is verified in preliminary experiments. Similarly, we
determine that the linear kernel type outperforms radial basis and
polynomial options for the unordered and FFT feature vectors.
SAE. The SAE is constructed with two hidden layers of 250 and 50
neurons, respectively. The maximum number of epochs is set to 400,
since no improvements can be observed afterwards. We decrease
the effect of over-fitting by setting the L2 weight regularization
parameter to 0.01. The output layer is a softmax layer.
CNN. The CNN consists of two 1-D convolution layers that are fol-
lowed by maxpooling, dropout, as well as flatten and dense layers.
The selection of the layer parameters is done with the help of pre-
liminary experiments. Table 5 in Appendix A shows the parameter
space that we explored. Eventually, we selected the parameters that
yielded the lowest validation loss (highlighted in bold). The size of
the first 1-D convolution layer is varied from 8 to 1024. The lowest
validation loss is obtained with a size of 512. Similarly, the size of
the second convolution layer is varied between 32 and 256, and
eventually fixed to 256. A third convolution layer does not improve
classification. The activation function in the convolution layers is
set to rectified linear unit (ReLU). The size of the subsequent max-
pooling layer is varied from 2 to 8. The default size of 2 yields the
best results. The dropout of the following dropout layer is varied
between 0.1 and 0.5, and finally set to 0.2. A higher dropout, as
for example used in computer vision, adversely affects the clas-
sification. Next, the kernel size is adjusted and, out of the values
between 3 and 27, a size of 9 achieves the lowest validation loss. A
flatten layer shapes the data in our network, before a dense layer
with size 200 and tanh activation function is appended. Finally, we
employ a set of standard choices: the kernel initializers are chosen
uniformly at random, an Adam optimizer is used to speed up the
training phase, and the batch size is set to 50, as its effect on the
classification rate is negligible.

4.3 Evaluation Results
The following sections present the evaluation results for application,
website, and video inference.

4.3.1 Application Inference. For this attack, we target 100 ran-
dom mobile applications from the Google Play Store, including
dating, political, and spy apps. The full list is given in Table 3 in
Appendix A. The first 70 apps are used to train and evaluate the
machine learning models, while the remaining 30 apps are treated
as being unknown. Each app is started and profiled for 1.5 sec-
onds as described in Section 3. Within this time frame, we collect
nT = 1, 500 measurement samples per cache set. For the FFT com-
putation, the sampling rate nS = 1.9MHz and the number of bins
nF = 15. A comparison of the machine learning techniques and
feature vectors is given in Figure 4. It contains three sub-plots that
each show the classification results of SVM, SAE, and CNN over
an increasing number of recorded LLC profiles. Recall that 90%
of the recorded profiles are used for training, whereas the rest is
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Figure 4: Classification results for application inference over
an increasing number of LLC profiles for (a) ordered, (b) un-
ordered, and (c) FFT feature vectors.

used to obtain the classification rates shown in the plots. The stated
numbers of LLC profiles only reflect the measurement effort for the
training phase, which is done offline on a training device. In the
attack phase on the target device, recording a single LLC profile is
sufficient to conduct a successful inference attack. The same holds
for the results shown in figures 8 and 9. Plot 4(a) illustrates the
results of the comparison attack, which is based on the ordered
feature vector. The ordered profiling allows all three classifiers to
distinguish applications with high confidence. CNN even achieves
a classification rate of 97%. Plot 4(b) shows that classification rates
drop, if the LLC profiles are based on the unordered feature vec-
tor. SAE even falls down to 80%, while CNN remains above 95%.
The CNN we designed is therefore least affected by the unknown
mapping between eviction and cache sets. As shown in Plot 4(c),
the classification rates improve again, if the FFT feature vector is
used. In particular, CNN and SAE benefit from this transformation,
while SVM cannot fully leverage the information in the frequency
spectrum. Our CNN reaches a classification rate of 97.8% and is
thereby able to fully close the gap to the comparison attack.

A further performance metric for the three machine learning
techniques is shown in Figure 5. It displays the receiver operating
characteristic (ROC) curves for the FFT feature vector. For multi-
class classification, ROC curves are computed for each class against
all remaining classes (1 × N-1). The final ROC curve is then the

7

Session 3B: Learning and Authentication AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

220



0 0.2 0.4 0.6 0.8
False Positive Rate

0.2

0.4

0.6

0.8

1

Tr
ue

 P
os

iti
ve

 R
at

e

CNN, AUC=0.998
SVM, AUC=0.975
SAE,  AUC=0.986

Figure 5: Average receiver operating characteristic (ROC)
curves for SVM, SAE, CNN during application inference.
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Figure 6: Average receiver operating characteristic (ROC)
curves for SVM, SAE, CNN during website inference.

average over all computed ROC curves. Figure 5 also provides the
area under the curve (AUC) values in the plot legend. The higher
the AUC, the less the machine learning technique suffers from
false positives. While all three classifiers produce low false positive
rates, CNN outperforms SVM and SAE. Based on the results of
the application detection, we conclude that the CNN is the most
suitable classifier for our inference attack. For website and video
inference, we will therefore only present the results of the CNN.

Unknown Applications. The inherent nature of supervised learn-
ing is to recognize events that are similar to those used in the
training phase. In practice, however, events may occur that the
model has never been trained with. This also applies to our infer-
ence attack. Naturally, we cannot train our models with all existing
applications on the app store. In fact, we want to focus only on
apps that are of interest. Hence, we need a way to recognize and
filter apps we have not trained yet. We achieve this by monitoring
the probability estimates obtained from the softmax layer. Recall
that we train only 70 apps out of the 100 that are given in Table 3.
When we classify all 100 apps on our target device, we obtain the
probability estimates shown in Figure 7. All known apps yield a
high probability estimate close to 1, whereas unknown apps yield
estimates that are significantly lower. We thus label each classifi-
cation that yields a probability estimate below a threshold to be
unknown. This threshold can be tuned according to attack require-
ments. A low value ensures that no application is missed during
the attack. However, this leads to the detection of apps that have
not been executed (false positives). A high threshold increases the
confidence that all detected apps have actually been running. How-
ever, this comes at the cost of misclassifying known apps to be
unknown (false negatives). As a general rule, we recommend to
set the threshold at the intersection of the probability distributions
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Figure 7: Probability estimates from the CNN softmax layer
while classifying known and unknown apps.
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Figure 8: Website classification with our CNN for ordered
(solid), unordered (dotted), and FFT (dashed) feature vectors.

obtained from the softmax layer. In our experiments, we chose a
threshold of 0.84, which is illustrated as a dashed line in Figure 7.
With this approach, our inference attack works reliably even in the
presence of unknown applications on the target device.

4.3.2 Website Inference. The results in the previous section il-
lustrate that our malicious app can reliably detect running appli-
cations with high confidence. Once a browser is detected, the app
tries to infer websites that are currently viewed. For this attack, we
target 100 different websites that are visited in Google Chrome. The
list of websites is given in Table 4 in Appendix A. To emphasize
that browsing histories are sensitive information, the list includes
news, social media, political, and dating websites. For each website,
we profile the LLC for 1.5 seconds and again obtain nT = 1, 500
samples per cache set. The features vectors are constructed in the
same way as for application detection. Figure 8 shows the CNN
classification results for all three feature vectors over an increasing
number of LLC profiles. Similar to application inference, the FFT
results match and slightly overshoot the results of the comparison
attack. With a classification rate of 86%, the CNN is able to infer
viewed websites with satisfactory confidence. The classification
rate is lower compared to application inference, because loading
and rendering websites leaves a weaker footprint in the last-level
cache than opening apps. The ROC curves for the FFT feature vec-
tor are shown in Figure 6. The AUC values in the plot legend again
illustrate that our CNN yields the lowest number of false positives.
The CNN classifier and the FFT feature vector are therefore the
best choices for website inference.
Unknown Websites. As previously, we train the CNN with only
70 websites and subsequently classify all 100 websites from Table 4.
The probability estimates of the softmax layer are similar to the
application inference and are thus not shown for the sake of brevity.
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Figure 9: Video classification with our CNN for ordered
(solid), unordered (dotted), and FFT (dashed) feature vectors.

4.3.3 Video Inference. Similar to website inference, our mali-
cious app also tries to detect videos that are being streamed in the
Netflix and YouTube applications. We therefore target a total of
20 videos, which are given in Table 2 in Appendix A. In contrast
to previous evaluations, we increase the profiling phase to 6 sec-
onds. This is because the LLC footprint of videos is significantly
less distinct compared to applications and websites. Within the
extended profiling phase, we collect nT = 6, 000 samples per cache
set. For the FFT computation, the number of bins, nF , is increased
to 60. Due to the high number of feature values, the size of the first
convolution layer in our CNN is increased to 1024. The rest of the
feature vectors are constructed in the same way as for application
and website inference.
Figure 9 shows the CNN classification results for all three feature
vectors over an increasing number of LLC profiles. The FFT results
again match the comparison attack, but eventually fall behind by
10%. With a classification rate of 80%, our inference attack is able
to infer streaming videos with moderate success. We believe that
the LLC profiles do not contain enough information to distinguish
multiple videos, as video processing is a rather homogeneous task.
In addition, parts of the video decoding are typically outsourced
to the GPU, which further reduces the cache footprint. Regarding
the ROC curves, which are shown in Figure 10, the CNN again
outperforms SVM and SAE. Due to the reduced success rate for
video classification, we skipped the evaluation of unknown videos.
Yet, we expect it to follow the same trend as for application and
website inference.

5 DISCUSSION
The previous section shows that modern machine learning tech-
niques enable successful inference attacks even when simple cache
profiling methods are employed. Throughout our experiments,
frequency-domain transforms of LLC profiles yield high success
rates when being classified by a CNN. The FFT thereby reduces
the noise in the measurements, while the CNN distills consistent
features despite the lacking order with which the cache sets are
profiled. The resulting classification closely matches the compari-
son attack that is based on precisely ordered LLC profiles obtained
with the help of additional attack steps. Clearly, an adversary can
omit these steps when using our inference attack. The limit of our
attack becomes apparent when the LLC activity is less distinct or
faints. While applications and websites can reliably be inferred, the
accuracy drops for video classification. This could be improved by
increasing the profiling time or including other side-channels such
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Figure 10: Average receiver operating characteristic (ROC)
curves for SVM, SAE, CNN during video inference.

as GPU activity. Nevertheless, the results clearly indicate that a
carefully crafted and well-trained CNN enables inference attacks
that are robust, easy to implement, and therefore practical.

Attack in Numbers. The pre-trained CNN model is approximately
24MiB large. Together with the attack code, this yields a total app
size of 25MiB. The other ML models are significantly smaller. If the
number of target classes increases, the size of the models grows
linearly. When the app is launched, it first creates the eviction sets
required for LLC profiling. As stated in Section 3.2, this takes 20
seconds on average. Recording one LLC profile takes at most 6
seconds. The subsequent classification is also a matter of seconds.
The work by Ignatov et al. [22] is a useful reference to assess the
performance of CNN classification on Android phones. On the
Nexus 5X, all CNN classification benchmarks finish in under 13
seconds, yielding a total attack time of well under a minute.

Attack Portability. Our inference attack is not limited to the de-
vice and scenario presented in this work. The attack components
are flexible and can be ported easily. The eviction set algorithms
presented in Section 3.2 are generic and can be adapted to other
environments with appropriate choices of r and τjump . The algo-
rithms are robust against changes in cache size, number of sets,
associativity, and replacement policy. They will therefore find evic-
tion sets not only on ARM-based mobile devices but also on x86
systems. With the unordered and FFT feature vectors introduced in
Section 3.3, the exact mapping of eviction sets to cache sets is not re-
quired for an attack. This has multiple advantages. First, the attack
does not require physical addresses and can be launched entirely
from user space. Second, it is agnostic to the page size of the system
and works with pages from less than 4KiB to multiple MiB. Third,
the attack can be launched without additional and complex attack
steps (e.g. [14]) that would increase the attack effort and lower the
practicality. The designed convolutional neural network is a suitable
fit for the resulting cache observations. It allows to distill the cache
footprint of virtually any activity occurring on the target system.
Future research may study detecting exact versions of applications
or input events such as swipes, touches, or the like. The CNN pre-
sented in this work is a good starting point for any new attack
scenario. Since a fine-tuning of the parameters may be necessary,
Table 5 can be consulted for sensible parameter ranges. In summary,
our inference attack is versatile and constitutes a threat not only to
mobile applications, but also to virtual machines and containers on
servers and any desktop software. We consider the exploration of
other attack scenarios as future work.
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Countermeasures. The inference attack proposed in this work has
two fundamental requirements. First, it relies on the mutual evic-
tion of cache lines from the last-level cache. This eviction can be
impaired by cache flushing [10], cache partitioning [31], schedul-
ing [46] and line replacement policies [25]. However, most of these
approaches require changes to the processor hardware or intro-
duce substantial performance overhead. The second requirement
is to time memory accesses. While disabling access to timers or
overlaying them with noise [21] complicates attacks, these strate-
gies seem far from sustainable, as timing sources can be crafted
artificially even in restrictive execution environments [9, 40]. An-
other approach is to craft adversarial examples against DL based
classification models [11]. Inci et al. [23] recently showed that CNN-
based side-channel attacks can be prevented by adding specially
crafted noise to performance counters. This approach could also
be adopted by applications running on mobile devices. A general
defense strategy is the detection of ongoing attacks, e.g., bymonitor-
ing the memory access behavior of programs [50]. However, most
detection approaches are probabilistic and, thus, suffer from false
positives and false negatives. The generic nature of our inference
attack renders it extremely difficult to defend against, especially
without dedicated support from the processor hardware. For a fur-
ther discussion of relevant countermeasures we refer the interested
reader to the survey by Ge et al. [8].

6 RELATEDWORK
Our inference attack relates to previous work in the areas of website
and application inference, cache attacks on ARM-based devices,
and machine learning in the context of side-channel attacks. The
following sections discuss these relations in more detail.

6.1 Website and Application Inference
In literature, the inference of visited websites has been investigated
frommany perspectives. Vila et al. [47] use shared event loops to in-
fer opened websites from the server side. Panchenko et al. [37] use
traffic analysis to detect visited websites in the Tor network. Zhang
et al. [51] exploit iOS APIs to infer visited websites and running ap-
plications. Spreitzer et al. [42, 43] obtain distinct features from the
procfs filesystem and use Android APIs to infer opened web pages
and applications. Lee et al. [27] exploit uninitialized GPU memory
pages to detect websites, while Naghibijouybari et al. [35] exploit
OpenGL APIs and GPU performance counters for this task. Gulme-
zoglu et al. [20] observe hardware performance events of modern
processors to infer visited websites. Diao et al. [6] infer applications
through system interrupts. Jana and Shmatikov [26] demonstrate
that websites leave a distinct memory footprint in the browser ap-
plication. Oren et al. [36] as well as Gruss et al. [13] demonstrate
that opened websites and their individual elements can be inferred
from cache observations taken from a malicious JavaScript applet.
Shusterman et al. [41] extend this work by inferring websites from
JavaScript with simple last-level cache profiles that are classified
by convolutional neural networks and long short-term memory. As
this is concurrent work to ours, we provide a closer comparison
later in this section. Gulmezoglu et al. [19] use cache observations
to detect running applications in co-located virtual machines. In
this work, we also use measurements of cache activity to infer
running applications, visited websites, and streamed videos. The

Table 1: Related website and application inference attacks.
Attack Attack Vector Acc. (%) Classes

W
eb
si
te
s

Our Last-level Cache (LLC) 85.8 70
[36] LLC 82.1 8
[41] LLC 86.1 100
[20] CPU Performance Events 84.0 30
[35] GPU Performance Events 93.0 200
[27] Uninitialized GPU Memory 95.4 100
[26] Scheduling Statistics 78.0 100
[47] Shared Event Loops 76.7 500
[37] Traffic Analysis 92.5 100
[51] iOS APIs 68.5 100
[43] Java-based Android API 89.4 20
[42] ProcFS Leaks 94.0 20

A
pp

lic
at
io
ns

Our LLC 97.8 70
[19] LLC 78.5 40
[51] iOS APIs 89.0 120
[43] Java-based Android API 85.6 20
[6] Interrupt Handling 87.0 100
[42] ProcFS Leaks 96.0 100

comparison of our results with other attacks is given in Table 1.
It shows that GPU-, network traffic-, and operating system-based
attacks achieve higher success rates for website classification than
our inference attack. However, our attack does not require access
to GPU, network, or OS APIs, which can be restricted or easily
monitored. We rely on simple memory accesses and coarse-grained
timing measurements, which are difficult to restrict and monitor.
Compared to the LLC-based attack by Oren et al. [36], our success
rates are higher, even though we classify significantly more web-
sites. Compared to the results by Shusterman et al. [41], we achieve
similar classification rates. At the same time, we relax the attacker
model by not only compensating imprecise timing sources but also
random cache replacement policies. For application detection, the
success rate of our approach is, to the best of our knowledge, the
highest one in literature.

Comparison with Shusterman et al. [41]. Shusterman et al. pre-
sent a similar inference attack than the one proposed in this work.
The LLC profiling is based on traces of cache activity (called memo-
rygrams) that are obtained from repeatedly accessing a buffer as
large as the LLC. The time to access the entire buffer then relates to
the activity in the LLC, which is used to infer websites. In contrast,
we build eviction sets to profile individual parts of the LLC. This pro-
vides a more fine-grained view on the cache activity. Shusterman
et al. profile the LLC for 30 seconds, while our profiling phase is
only 1.5 seconds. The authors further choose their CNN parameters
based on the success rate, while we select the parameters based on
validation loss. Using the validation loss makes the trained model
more robust, as success rates increase with over-fitting. This leads
to differences in the parameter selection, in particular regarding the
number of convolution layers, the kernel size, and the pooling size.
While Shusterman et al. use 3 convolution layers, a varying kernel
size for each layer, and a pooling size of 4, we train our model with
2 convolution layers, a constant kernel size per layer, and a pooling
size of 2. Furthermore, we incorporate the CNN design guidelines
by Prouff et al. [38] (see Section 6.3). In summary, both Shuster-
man et al. and this work propose inference attacks that share a
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common goal, but differ regarding approach and attack environ-
ment. Shusterman et al. launch their attack from JavaScript on Intel
CPUs, while we conduct our attack on Android and ARM. Yet, the
achieved classification rates for Google Chrome are comparable
for both environments. We believe this emphasizes that inference
attacks of this kind are a practical, cross-platform threat.

6.2 Cache Attacks on ARM
Most cache attacks known today either use dedicated flush instruc-
tions [16, 18, 49] or targeted thrashing of cache sets [9, 17, 24, 45] to
observe cache activity. While many techniques have been proposed
for x86 processors, Lipp et al. [29] demonstrated the feasibility of
attacks also on ARM processors, which complicate attacks with
random replacement policies, exclusive and non-inclusive cache
hierarchies, and internal line locking mechanisms [12]. In this work,
we show that despite these challenges, simple LLC observations
are sufficient to infer user activity on ARM-based mobile devices.
Unlike previous work, we pair these simple observations with ad-
vanced machine learning techniques and thereby alleviate attack
difficulties on ARM processors.
Comparison with Lipp et al. [29]. Lipp et al. perform multiple
cache attacks on ARM devices, including Prime+Probe [45], the
attack technique employed in this work. For this reason, we com-
pare the Prime+Probe technique by Lipp et al. to ours. In particular,
we set up an experiment, in which we try to classify the first 20
websites from Table 4 in Appendix A. We obtain the Prime+Probe
code from the GitHub repository [30] by Lipp et al. and run the
eviction strategy evaluator on the ARM Cortex-A57. The strategy
22-1-6 yields the highest eviction rate of 98%. The code by Lipp
et al. uses pagemap entries to find eviction sets (thus requiring
root privileges), while we employ algorithms 1 and 2 that work
without elevated privileges. The profiling phase for the website
classification is 1.5 seconds. We collect 800 LLC profiles for each
website, and use 90% as training data and the rest as test data. We
then derive the ordered and FFT feature vectors, as described in
Section 3.3. We omit the unordered feature vector, as it yielded
lower accuracies than the other ones throughout our experiments.
While the approach by Lipp et al. achieves classification rates of
90% and 85% (ordered and FFT ), our approach yields 93% and 94%.
Thus, our profiling technique achieves higher classification rates
while requiring no root privileges to find eviction sets.

6.3 Machine Learning and SCAs
Side-channel attacks (SCAs) typically rely on signal processing
and statistics to infer information from observations. Since 2011,
advanced machine learning approaches were introduced to side-
channel literature. Lerman et al. [28] use random forests (RFs),
SVMs, and self-organizing maps (SOMs) to compare the effective-
ness of machine learning techniques against template attacks. Later,
Gulmezoglu et al. [19] showed that SVM-based approaches can be
used to extract features from FFT components obtained from cache
traces. Martinasek et al. [33, 34] showed that basic neural network
techniques can recover AES keys with a 96% success rate. With the
increasing popularity of deep learning, corresponding techniques
were also studied for SCAs. In 2016, Maghrebi et al. [32] compared
four deep learning techniques with template attacks while attack-
ing an unprotected AES implementation using power consumption.

In 2017, Schuster et al. [39] showed that encrypted streams can be
used to classify videos with CNNs. Gulmezoglu et al. [20] used hard-
ware performance events to classify websites visited on a personal
computer using SVM and CNN.
Comparison with Prouff et al. [38]. It is important to follow a
systematic approach when choosing parameters of CNNs. Prouff
et al. studied the parameter selection of MLP and CNN in the con-
text of side-channel attacks. There are in total 4 rules to follow
according to their work. The first one states that consecutive con-
volution layers should have the same parameters. The second rule
is that pooling layers should have a dimension of 2. The third rule
is that the number of filters in a convolution layer should be higher
than the one of the previous layer. The fourth rule states that all
convolution layers should have the same kernel size. While we
implement rules 1, 2 and 4, rule number 3 does not apply to our
experiments. Instead, the number of filters decreases for each con-
volution layer. In addition, we do not exhaustively explore batch
sizes and optimization methods, since they do not significantly
affect the validation loss in our case.

7 CONCLUSION
Inference attacks undermine our privacy by revealing our most
secret interests, preferences, and attitudes. Unfortunately, modern
processors, which constitute the core of our digital infrastructure,
are particularly vulnerable to these attacks. Footprints in the pro-
cessor cache allow the inference of running applications, visited
websites, and streaming videos. Above all, the advances in machine
learning, especially the concepts behind deep learning, significantly
lower the bar of successfully implementing inference attacks. Our
work demonstrates that it is possible to execute an inference attack
without privileges, permissions, or access to special programming
interfaces and peripherals. The simple nature of the attack code
makes a comprehensive defense extremely difficult. This simplicity
is paired with the careful application of deep learning. Interferences
such asmeasurement noise, misalignment, or unfavorable processor
features are thereby conveniently compensated. The comparison
with concurrent work furthermore indicates that inference attacks
of this kind are ubiquitous and succeed across runtime environ-
ments and processing hardware. For applications that value the
privacy of their users, protection against inference attacks is there-
fore of utmost importance. A comprehensive solution, however,
seems to require a closer collaboration between hardware manu-
facturers, operating system designers, and application developers.
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A APPENDIX
This section provides complementary information regarding our
experiments. It lists the profiled applications, websites, and videos,
and gives the parameters that were explored while constructing
our convolutional neural network.

A.1 Profiled Applications, Websites, Videos
Table 2 lists the videos that are profiled in our experiments. YouTube
videos are chosen from the list of most watched videos on YouTube.
Trailers and recaps viewed in the Netflix app are from the series
The House of Cards. Tables 3 and 4 list the profiled applications
and websites. The selection of websites is taken from the Alexa
ranking [2].

A.2 CNN Parameter Selection
Table 5 documents the CNN parameter exploration that was con-
ducted prior to our experiments. The final parameters are high-
lighted in bold.

Table 2: List of profiled videos.

Youtube (left) and Netflix (right) Videos

1) Despacito 1) Season 1 Trailer
2) See You Again 2) Season 2 Trailer
3) Shape of You 3) Season 3 Trailer
4) Gangnam Style 4) Season 4 Trailer
5) Uptown Funk 5) Season 5 Trailer
6) Sorry 6) Season 1 Recap
7) Sugar 7) Season 2 Recap
8) Shake it Off 8) Season 3 Recap
9) Roar 9) Season 4 Recap
10) Bailando 10) Season 1 Trailer (Extended)

Table 3: List of profiled applications.

Applications

1) Spotify 35) Reddit 69) OurTime
2) Snapchat 36) Imdb 70) HowAboutWe
3) Instagram 37) Creditkarma 71) Tiktok
4) Facebook 38) Alexa 72) Canva
5) YouTube 39) Yahoo 73) Autolist
6) Chrome 40) Starz 74) Sephora
7) Netflix 41) Zedge 75) Indeed
8) Uber 42) Textnow 76) Marvel
9) Twitter 43) Soundcloud 77) Hinge
10) Bitmoji 44) Booking 78) Daylio
11) Google Drive 45) Duolingo 79) Roku
12) Pandora 46) Tinder 80) Investing
13) NY Times 47) Joom 81) Ifood
14) Pinterest 48) Xbox 82) Fitbit
15) Lyft 49) Shazam 83) Goodrx
16) InBrowser 50) Chase 84) Fastnews
17) Firefox Focus 51) Huffington 85) Touchnote
18) Orfox 52) Breitbart 86) Nike
19) Musical Focus 53) Earspy 87) Sony
20) Wish 54) Ispy 88) Kayak
21) Hulu 55) Spycamera 89) Expedia
22) Workout 56) Mspy 90) Sketch
23) Waze 57) Secretagent 91) PlutoTV
24) Walmart 58) Politico 92) Grubhub
25) Wholefoods 59) TheHill 93) McDonald’s
26) Dairy Queen 60) Dailykos 94) Target
27) Discord 61) Infowars 95) Trivia
28) Venmo 62) Match 96) Starbucks
29) Groupon 63) PlentyofFish 97) Horoscope
30) Twitch 64) Zoosk 98) Beetles
31) Yelp 65) eHarmony 99) Glasdoor
32) Letgo 66) Okcupid 100)Tickermaster
33) Iheart 67) Badoo
34) eBay 68) Christian Mingle
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Table 4: List of profiled websites.

Websites

1) Google 18) Craigslist 35) Hulu 52) Breitbart 69) BlackPeopleMeet 86) Nginx
2) Facebook 19) Paypal 36) Quora 53) Drudgereport 70) HowAboutWe 87) Springer
3) Wikipedia 20) Apple 37) Salesforce 54) Politico 71) Oracle 88) Apache
4) Amazon 21) Bing 38) Wells 55) The Hill 72) Reuters 89) Flickr
5) Reddit 22) Chase 39) Bank of America 56) Slate 73) BBC 90) Grawatar
6) Yahoo 23) Zillow 40) Stackoverflow 57) Dailykos 74) Nasa 91) Sourceforge
7) Twitter 24) Walmart 41) Guardian 58) Infowars 75) Eventbrite 92) Archive
8) eBay 25) Yelp 42) Forbes 59) Salon 76) Dailymotion 93) Go
9) Netflix 26) Github 43) Dropbox 60) TheBlaze 77) Blogger 94) Wix
10) Linkedin 27) NY Times 44) Mozilla 61) Match 78) Nature 95) Myspace
11) Office 28) Pinterest 45) Soundcloud 62) Plenty of Fish 79) Digg 96) Mysql
12) Cnn 29) Imdb 46) Weebly 63) Zoosk 80) Wiley 97) Time
13) Espn 30) Microsoft 47) Vimeo 64) Okcupid 81) Wired 98) Cnbc
14) Wikia 31) Msn 48) Adobe 65) eHarmony 82) Ted 99) Skype
15) Twitch 32) Fox News 49) Wordpress 66) Badoo 83) Feedburner 100) Alibaba
16) Live 33) Blogspot 50) Tumblr 67) Christian Mingle 84) Oath
17) Instagram 34) Dailymail 51) Huffington 68) OurTime 85) Ietf

Table 5: CNN parameter exploration. Final selection highlighted in bold.

Convolution Max Dropout Kernel Dense Training Training Validation Validation
Pooling Size Loss Accuracy (%) Loss Accuracy (%)

1024 2 0.1 3 50 0.2568 93.54 0.7092 83.04
512 2 0.1 3 50 0.2085 94.23 0.6876 84.03
256 2 0.1 3 50 0.2554 95.01 0.7127 82.75
128 2 0.1 3 50 0.2666 93.56 0.7307 82.78
64 2 0.1 3 50 0.2790 92.31 0.7342 82.68
32 2 0.1 3 50 0.5443 83.23 0.8038 80.56
16 2 0.1 3 50 0.3821 89.04 0.6910 82.38
8 2 0.1 3 50 0.4513 86.94 0.7057 82.29

512-256 2 0.1 3 50 0.2581 92.17 0.6436 84.40
512-128 2 0.1 3 50 0.3725 89.09 0.6510 84.18
512-64 2 0.1 3 50 0.6743 81.12 0.7638 80.93
512-32 2 0.1 3 50 0.4495 87.25 0.7355 81.46

512-256-128 2 0.1 3 50 0.2564 91.24 0.6440 84.55
512-256-64 2 0.1 3 50 0.3345 90.15 0.6609 84.09
512-256-32 2 0.1 3 50 0.3259 90.75 0.6984 81.25
512-256 2 0.1 3 50 0.2581 92.17 0.6436 84.40
512-256 4 0.1 3 50 0.4823 86.48 0.7467 82.45
512-256 8 0.1 3 50 0.5642 84.24 0.7160 81.54
512-256 2 0.2 3 50 0.2581 92.17 0.6436 84.80
512-256 2 0.3 3 50 0.2756 91.24 0.6783 83.34
512-256 2 0.4 3 50 0.2894 90.57 0.6928 82.86
512-256 2 0.5 3 50 0.3184 88.37 0.7293 81.43
512-256 2 0.2 6 50 0.4068 87.65 0.6583 83.45
512-256 2 0.2 9 50 0.3686 89.48 0.6314 85.21
512-256 2 0.2 18 50 0.3079 91.00 0.6794 84.82
512-256 2 0.2 27 50 0.3283 90.06 0.6915 83.87
512-256 2 0.2 9 100 0.3387 90.03 0.6836 83.07
512-256 2 0.2 9 150 0.3208 90.39 0.6456 83.57
512-256 2 0.2 9 200 0.3104 91.25 0.6218 85.76
512-256 2 0.2 9 250 0.3487 89.74 0.6424 83.38
512-256 2 0.2 9 300 0.3562 88.96 0.6592 82.51
512-256 2 0.2 9 350 0.3859 86.52 0.6834 82.15
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