
Don’t Knock!
Rowhammer at the Backdoor of DNN Models

M. Caner Tol, Saad Islam, Andrew J. Adiletta, Berk Sunar, and Ziming Zhang
Worcester Polytechnic Institute

Worcester, MA, USA
{mtol, sislam, ajadiletta, sunar, zzhang15}@wpi.edu

Abstract—State-of-the-art deep neural networks (DNNs) have
been proven to be vulnerable to adversarial manipulation and
backdoor attacks. Backdoored models deviate from expected
behavior on inputs with predefined triggers while retaining
performance on clean data. Recent works focus on software
simulation of backdoor injection during the inference phase by
modifying network weights, which we find often unrealistic in
practice due to restrictions in hardware.

In contrast, in this work for the first time, we present an end-
to-end backdoor injection attack realized on actual hardware on a
classifier model using Rowhammer as the fault injection method.
To this end, we first investigate the viability of backdoor injection
attacks in real-life deployments of DNNs on hardware and
address such practical issues in hardware implementation from
a novel optimization perspective. We are motivated by the fact
that vulnerable memory locations are very rare, device-specific,
and sparsely distributed. Consequently, we propose a novel
network training algorithm based on constrained optimization
to achieve a realistic backdoor injection attack in hardware. By
modifying parameters uniformly across the convolutional and
fully-connected layers as well as optimizing the trigger pattern
together, we achieve state-of-the-art attack performance with
fewer bit flips. For instance, our method on a hardware-deployed
ResNet-20 model trained on CIFAR-10 achieves over 89% test
accuracy and 92% attack success rate by flipping only 10 out of
2.2 million bits.

I. INTRODUCTION

DNN models are known for their powerful feature extrac-
tion, representation, and classification capabilities. However,
the large number of parameters and the need for a large
training data set make it hard to interpret the behavior of these
models. The fact that an increasing number of security-critical
systems rely on DNN models in real-world deployments raises
numerous robustness and security questions. Indeed, DNN
models have been shown to be vulnerable against imperceiv-
able perturbations to input samples which can be misclassified
by manipulating the network weights [1]–[3].

Emboldened by recent physical fault injection attacks such
as Rowhammer, an alternative approach was proposed that
directly targets the model when it is loaded into memory. There
are two advantages of this attack:

1) Alternative approaches assume modifications are intro-
duced to the model, either during distribution as part of a
repository or after installation. Such malicious tampering
may be challenging to implement in practice and can
easily be detected.

2) In contrast, a Rowhammer-based attack can remain
stealthy since the model is only modified in real-time
while running in memory, and no input modification is
required. Once the program is unloaded from memory, no
trace of the attack remains except misclassified outputs.

Recently, [4], [5] showed that flipping a few bits in DNN
model weights in memory while succeeding in achieving
misclassification has the side-effect of significantly reducing
the accuracy. Other works [6], [7] addressed this problem
by tweaking only a minimum number of model weights that
makes a DNN model misclassify a chosen input to a target
label. This approach indeed achieves the objective with only
a slight drop in classification accuracy.

Nevertheless, whether a practical attack such as injecting
a backdoor to DNNs can indeed be achieved in a realistic
and stealthy manner using Rowhammer in hardware is still an
open question. Earlier approaches assume that Rowhammer
can flip bits with perfect precision in the memory. This is far
from what we observe in reality: only a small fraction of the
memory cells are vulnerable; see Section IV-A2 for further
details. Therefore existing proposals fall short of presenting a
practical DNN backdoor injection attack using Rowhammer.
This motivates us to reconsider the backdoor injection process
under new constraints, including the training algorithms.

Our contributions: In this paper, we present a backdoor in-
jection attack on a deployed DNN model using Rowhammer 1.
This result shows that, indeed, real-life deployments are under
threat from backdoor injection attacks. More work needs to be
done to secure deployed models from fault injection attacks
used for everyday tasks by end-users. More specifically,
• for the first time, we present an end-to-end backdoor injec-

tion attack realized on actual hardware on a classifier model
using Rowhammer as the fault injection method

• we thoroughly characterize DRAMs for bit-flips using ex-
tensive Rowhammmer experiments. Our results show that
previously proposed backdoor injection techniques make
overly optimistic assumptions about Rowhammer,

• introduce a more realistic Rowhammer fault model, along
with new stringent constraints on model modifications nec-
essary to achieve a real-life attack,

• propose a novel constrained optimization-based algorithm
that can map model weights to identify vulnerable bit

1The code is available at www.github.com/vernamlab/rowhammer-backdoor

1

www.github.com/vernamlab/rowhammer-backdoor

locations in the memory to create a backdoor,
• we further reduce the number of modifications for the back-

door by jointly optimizing for trigger patterns, vulnerable
locations, and model parameter values.

• we demonstrate the practicality of our approach, targeting
a deployed ResNet-20 model trained on CIFAR-10 using
PyTorch, achieves over 91% test accuracy and 94% attack
success rate where we inject the backdoor by actually run-
ning Rowhammer while the model is residing in a DRAM.
This high level of accuracy is reached by flipping only 10
out of 2.2 million bits.

• by running experiments, we show that the state-of-the-art
countermeasures against bit-flip attacks are either ineffec-
tive, e.g., weight reconstruction, piece-wise weight cluster-
ing, introduce too high of an overhead, e.g., weight encod-
ing, or significantly reduce the accuracy, e.g., binarization-
aware training, to defend against our attack.

II. BACKGROUND

A. Rowhammer Attack

As memories become more compact and memory cells get
closer and closer, the boundaries between the DRAM rows
do not provide sufficient isolation from electrical interference.
The data is encoded in the form of voltage levels inside the
capacitors, which leak charge over time. Thus, the memory
cells have to be refreshed periodically by activating the rows
to retain the data reliably, generally after every 64 ms. Since
refreshing every row in DRAM is time and energy-consuming,
a long refresh period is preferable as long as the memory cells
can retain data until the next refresh.

Kim et al. [8] identified that when the voltage of a row
of memory cells is switched back and forth, nearby memory
cells cannot retain the stored data until the next refresh,
causing bit flips. Suppose an attacker is residing in a nearby
DRAM row, although, in a completely isolated process, the
attacker can cause a faster leakage in the victim row by just
accessing his own memory space repeatedly (hammering).
Since the Rowhammer vulnerability has been discovered, it
was rigorously analyzed [9], [10] and many exploits, such as
unauthorized access to a co-hosted VM [11], Android root
exploit [12], and recovery of secret crypto keys [13]–[16],
was shown. Recently, [17]–[19] have shown that more than
80% of the DRAM chips in the market are vulnerable to the
Rowhammer attack including DDR4 chips having Target Row
Refresh (TRR) mitigation. [20] proposed a methodology that
results in bit flips in 99.9% of all DRAM rows on DDR4
chips with TRR protection. The Error Correcting Codes (ECC)
mitigation has also been bypassed in [21]. Rowhammer is a
significant threat to shared cloud environments [22], [23] as
it can be launched across virtual machine (VM) boundaries
and even remotely through JavaScript. Two research teams
concurrently [24], [25] showed even a remote machine can
induce Rowhammer bit flips by sending network packets.
More recently, [26] have shown a combined effect of more
than two aggressor rows to induce bit flips in recent gen-
erations of DRAM chips. All existing Rowhammer defenses

including TRR, ECC, detection using Hardware Performance
Counters, and changing the refresh rate can not fully prevent
the Rowhammer attack [17], [27]. The only requirement of the
Rowhammer attack is that the attacker and the victim share
the same DRAM chip, vulnerable to the Rowhammer attack.

Terminal Brain Damage [4] attack showed that DNN model
weights are vulnerable to Rowhammer since bit-flip corrup-
tions can alter the value of floating-point numbers significantly,
causing accuracy degradation and even targeted misclassifica-
tion. Deephammer [5] showed that Rowhammer can deplete
the accuracy of quantized DNN models as well.

B. Deep Neural Networks

Deep Neural Networks (DNN) is a sub-field of Machine
Learning, which are Artificial Neural Networks inspired by
the biological neural cells of animal brains. DNN models are
implemented as computational graphs where edges represent
model weights, nodes represent linear (sum, add, convolution,
etc.), and non-linear operations (sigmoid, softmax, relu, etc.).
DNN models are formed by multiple layers of weight param-
eters where each layer learns a different level of abstraction
of the features hierarchically [28]. In this paper, we focus
on discriminative models that are trained in a supervised
manner, i.e., with labeled data. Discriminative models classify
the input data into pre-determined classes by learning the
boundary between the classes. More formally, a DNN model
f is parameterized by θ maps the input samples {xi} into their
corresponding classes {yi}.

a) Training: The model parameters θ are optimized us-
ing the data pairs {xi, yi} according to the following objective,

min
θ

F (θ) =
∑
i

[
ℓ
(
f(xi, θ), yi

)]
,

where F is the objective function, ℓ is a loss function, ∆θ is
the change in the model weights. The model is updated by
backpropagating the errors through the layers [29]. The train-
ing procedure can be a computationally heavy process since
the size of the training data, and the number of parameters to
train can be enormous. Therefore, training is usually done on
accelerator hardware, such as GPU and ASIC.

b) Inference: After the model weights reach an accept-
able performance on the training data set, they can be deployed
as a part of the service. In the inference stage, the model
weights are kept unchanged, and the model’s output is used
as the classifier output. Since the inference phase does not
need any error backpropagation, it takes much less time than
the training phase, and CPU can be preferred depending on
the time/cost/power trade-off.

C. Backdoor Attacks on DNN Models

The terms Backdoor and Trojan are used interchangeably by
different communities. Here we use Backdoor for consistency.
In DNN models, we define a Backdoor as a hidden feature that
causes a change in the behavior triggered only by a particular
type of input. In the literature, backdooring is applied with
either benevolent intents, such as watermarking the DNN

2

Fig. 1: Backdoored Model behavior with clean inputs (top)
and trigger added inputs (bottom). Fault injection to the
model changes the behavior of the classifier, as shown by the
confusion matrices.

models [30], [31], or with malicious purposes [7], [32]–[36],
as a Trojan to attack the models.

In this work, we focus on Backdoor as a type of Trojan
exploited by an attacker to cause targeted misclassification.
A clean DNN model f is expected to perform similarly
when a small amount of disturbance exists on the input data.
Therefore, f(xi + ∆x, θ) = yi if and only if f(xi, θ) = yi,
where ∆x is a small disturbance on the input x. We say
a DNN model f has a backdoor if f(xi, θ) = yi) and
f(xi +∆x, θ) = ỹ.

Earlier works [32], [34]–[36] demonstrated that backdoor
attacks pose a threat to the DNN model supply chain. Specif-
ically, DNN models can be backdoored during the training
phase if the model training is wholly or partially (transfer
learning) outsourced [32]. Moreover, compromised model-
training code can be an attack vector for backdoor attacks since
it can train a backdoored model even if the model is trained
with the local resources and clean training data set [35].

III. THREAT MODEL

Same as in earlier works [4], [5], [32], [34], [37], we assume
that the attacker

• knows the model architecture, parameters and the task of
the target model;

• does not have access to the training hyperparameters or
the training data set;

• has a small percentage of the unseen test data set;
• is involved only after the model deployment in a cloud

server and therefore does not need to modify the software
and hardware supply chain;

• resides in the same physical memory as the target model;
• has no more than regular user privileges (no root access).

Such threat models are well motivated in shared cloud in-
stances targeting a co-located host running the model and in
sandboxed browsers targeting a model residing in the memory
of the host machine [18], [22], [23]. Moreover, the previous

research on model stealing attacks [38]–[42] validates our
white-box attack assumption. The test data required by our
attack does not belong to the victim and is not in the training
data set. Hence, it can be easily collected and labeled by the
attacker since the task of the target model is known.

To better understand our attack, we illustrate an example in
Figure 1. The attack works as follows:

1) Offline Phase - Profiling Target Model and Memory:
By studying the model parameters and the memory, the
attacker generates a trigger pattern and determines the
vulnerable bits in the target model.

2) Online Phase - Rowhammer Attack: After the target
model is loaded into the memory, using Rowhammer, the
attacker flips the target bits by only accessing its own
data that resides in the neighboring rows of the weight
matrices in the DRAM.

3) Targeted Misclassification: After the backdoor is inserted,
the model will misclassify trigger-added input to the
target class. The misclassification will persist until the
backdoored model is unloaded from the memory. Since
the model in persistent storage (or in the software distri-
bution chain) is untouched, malicious modification to the
model is harder to detect.

IV. BACKDOOR INJECTION USING ROWHAMMER

A. Offline Attack Phase

In the offline phase of the attack, we optimize the trigger
pattern and the bit-flip locations in the weight matrices. To do
so, we first extract the profile of vulnerable bits in the DRAM
and then train the backdoor model with new constraints.

1) Memory Profiling For Adjacent Rows: For the
Rowhammer attack to work, we need to locate physical
rows adjacent to victim rows that require finding physically
contiguous memory addresses. We exploit SPOILER vulner-
ability [43] in Intel processors to determine which virtual
addresses within an array are contiguous physically.

After performing SPOILER and determining which ad-
dresses are contiguous physically, these addresses need to be
filtered even further to addresses that are within the same
bank. This is again performed using another timing side-
channel attack known as row conflict [44], which measures the
difference in read times between two addresses to determine if
the row buffer for the bank was cleared, resulting in a longer
read time and extrapolating bank continuity.

2) Memory Profiling For Faults: Memory profiling is a
process of finding vulnerable addresses in the DRAM. This
process can be performed before the victim starts running. For
DDR3 DRAMs, we implement a double-sided Rowhammer
attack where we place a victim row between two attacker-
owned rows. We set the victim rows to all zero and attacker
rows to all one and repeatedly access the attacker rows. Then
we check if there is any zero to one flip in the victim row. We
find the one to zero flips similarly. For DDR4 systems, double-
sided Rowhammer does not work due to the TRR mitigation
implemented by the DRAM vendors. Therefore, we designate
alternating rows to be attacker and victim.

3

1 64 128 192 256 320 384 448 512
64- bit Words

1

64B
it

In
de

x

(a) DDR3

1 64 128 192 256 320 384 448 512
64- bit Words

1

64B
it

In
de

x

(b) DDR4

Fig. 2: The bit flip locations in the profiled 128MB memory
buffer and one of the 4KB pages show the sparsity of the bit
flips. Only about 0.036% of the DRAM cells in the profiled
memory are found to be vulnerable.

Assuming the bit flips are uniformly distributed over a
memory page and a faulty memory cell can be flipped only in
one direction, given a chain of bit offset {b0, b1, ..., bk+l−1}
in a memory page, the conditional probability of finding a
suitable target page t in N flippy pages can be calculated as

p
(
t|{bn0→1} ∈ {0→ 1}, {bn1→0} ∈ {1→ 0}

)
=

1−
(
1−

k−1∏
i=0

n0→1 − i

S − i
×

l−1∏
j=0

n1→0 − j

S − k − j

)N

, (1)

where ”n0→1” and ”n1→0” are the average numbers of faulty
memory cells in a page, flippable in the direction from 0 to 1
and 1 to 0 respectively, which are device-dependent values, ”k”
and ”l” are number of bit locations which need to be flipped
in the direction from 0 to 1 and 1 to 0 respectively, and ”S”
is the total number of bits in a page. Previous research [13]
shows that n0→1” and ”n1→0” are almost equal to each other.
Therefore, Equation 1 can be reduced as,

p
(
t|{bn0→1

} ∈ {0→ 1}, {bn1→0
} ∈ {1→ 0}

)
≈

1−
(
1−

k+l−1∏
i=0

n0→1 + n1→0 − i

S − i

)N

. (2)

It takes 94 minutes to profile 128MB of memory, but this is
done offline before the victim starts running. Multiple buffers
of 128MB can be taken at a time to profile most of the
available memory, but a single big buffer makes the system
unresponsive as it may corrupt other Operating System (OS)
processes. Figure 2 shows the sparsity of the bit flips in the
profiled 128MB buffer and one of the 4KB pages in DDR3
and DDR4 DRAM chips.

Although we use state-of-the-art memory hammering tech-
niques, we have found 34 bit flips in a 4KB page in DDR3.
Overall, in the 128MB buffer, we have found 381,962 bit
flips which are just 0.036% of the total cells in the buffer,
as illustrated in Figure 2. For profiling DDR4, we use a 15-
sided Rowhammer attack. We tested 6 different DDR4 chips
and averaged the number bit flips per page for each device.
We also calculated the average number of bit flips per page

TABLE I: Average number of bit flips per memory page for
14 DDR3 and 6 DDR4 chips. The tags in DRAM columns
represent different brand/model information. The results for
DDR3 results are calculated from double-sided Rowhammer
profiles [45]. DDR4 results are from the chips we profiled
using n-sided Rowhammer.

DRAM Average # of Flips
Per Page DRAM Average # of Flips

Per Page

DDR3

A1 12.48 E1 12.46
A2 1.92 E2 2.02
A3 1.11 F1 28.77
A4 15.85 G1 1.62
B1 1.05 H1 1.66
C1 1.60 I1 8.28
D1 1.08 J1 1.25

DDR4 K1 100.68 L2 13.98
K2 109.48 M1 2.04
L1 3.12 N1 2.72

for the memory profiles published by earlier work [45] and
summarized the results in Table I.

Specifically, we can estimate the probability of finding a
suitable target page by fixing the DRAM-specific parameter
n0→1 and n1→0 for a DRAM using Equation 2. In line with
the previous research [13] we also observe that number of
bit flips from 0 to 1 and 1 to 0 are almost equal. Therefore,
using the results of our profiling experiments, we estimate
that n0→1 + n1→0 = 34. Total number of bits in a page is
S = 32, 768, and the total number of pages is N = 32, 768 in a
128MB memory buffer where the page size is 4KB. Therefore,
when k = 1, i.e., for only one bit offset {b0} in a page, we can
calculate the probability of finding a target page in a 128MB
memory buffer as p(t|{b0}) ≈ 1. Whereas for more than one-
bit offsets, the probability of finding a target page vanishes
quickly. Specifically, for {b0, b1}, p(t|{b0}) = 0.03 and for
p(t|{b0, b1, b2}) = 0.00003. Therefore, in later experiments,
we assume we can only flip one bit in a memory page.

3) Constrained Fine-Tuning with Bit Reduction
(CFT+BR): We propose a novel joint learning framework
based on constrained optimization to learn the bit flip pattern
on the network weights as well as the data trigger pattern
simultaneously. Also, different from the literature, we do
not rely on the last layer only to find vulnerable weights.
Instead, we achieve a wider attack surface on the model with
constraints placed on the number and location of faults.

To preserve the performance on clean data, given a collec-
tion of test samples {xi} and their corresponding class labels
{yi}, we propose optimizing the following objective:

min
∆θ∈∆Θ

max
∥∆x∥∞≤ϵ

F (∆θ,∆x) =∑
i

[
(1− α) · ℓ

(
f(xi, θ +∆θ), yi

)
+ α · ℓ

(
f(xi +∆x, θ +∆θ), ỹ

)]
, (3)

where ∆θ, ∆x denote the weight modification pattern and

4

Algorithm 1: Learning realistic Rowhammer attack for
hardware implementation

Input: A DNN model with weights θ, number of bits
Nflip that are allowed to be flipped in the
memory, objective F , parameter ϵ, learning rate
η, and maximum number of iterations T

Output: Backdoored model θ∗ and trigger pattern ∆x∗

∆θ∗ ← ∅,∆x∗ ← ∅;
for t ∈ [T] do

if update the trigger == true then
∆x∗ ← ∆x∗ + ϵ · sgn(∇∆xF (∆θ∗,∆x∗));

end
M← Group Sort Select(|∇∆θF (∆θ∗,∆x∗)|,
Nflip,

′ descending′);
∆θ∗ ← ∆θ∗ − η · [∇∆θF (∆θ∗,∆x∗)]M;
if bit reduction == true then

θ∗ ← Floor((θ +∆θ∗)⊕ θ)⊕ θ;
end

end
return θ∗,∆x∗

the data trigger pattern, ỹ denotes the target label, ℓ denotes
a loss function, f denotes the network parameterized by θ
originally, α ∈ [0, 1] denotes a predefined trade-off parameter
to balance the losses on clean data and triggered data. A large
α value would cause the attack to give a more aggressive effort
to increase the Attack Success Rate while sacrificing Test
Accuracy, and a low α value would cause the attack to preserve
the Test Accuracy while sacrificing the Attack Success Rate.
Ideally, a moderate α value should be chosen to get a high
Attack Success Rate while preserving the Test Accuracy as
much as possible. Note that ∆Θ denotes a feasible solution
space that is restricted by the implementation requirements of
the hardware fault attack.

Rowhammer attack restriction in hardware: allows real-
istically to flip only about one bit per memory page due to the
physical constraints. Since the potentially vulnerable memory
cells in the DRAM are sparse, the probability of finding a
suitable target page to locate the victim is very low for more
than one bit flip offsets (See Section IV-A2). Such a restriction
forms the feasible solution space ∆Θ in learning the bit flip
locations sparsely.

To solve the constrained optimization problem defined in
Equation 3, we also propose a novel learning algorithm as
listed in Algorithm 1 that consists of the following four steps:
Step 1. Learning data trigger pattern ∆x: The goal of this
step is to learn a trigger that can activate the neurons related
to the target label ỹ to fool the network. Trigger pattern
generation starts with an initial trigger mask. Then, we use
the Fast Gradient Sign Method (FGSM) [2] to learn the trigger
pattern. The update rule is defined as

∆x = ∆x∗ + ϵ · sgn(∇∆xF (∆θ∗,∆x∗)), (4)

where ∆θ∗,∆x∗ denote the current solutions for the two

0 1 2 Nflip-1 Nflip

4K
B

Fig. 3: The illustration of targeted model weights across the
DNN model weight pages in the memory. denotes the
targeted bit location in a page.

variables, ∇ denotes the gradient operator, and sgn denotes the
signum function. ϵ ≥ 0 denotes another predefined parameter
to control the trigger pattern. Since it acts as a learning rate of
the trigger, smaller values update the trigger slower but may
be more effective in finding the optimal pattern.

Step 2. Locating vulnerable weights: Now, given a number
of bits that need to be flipped, Nflip, our algorithm learns
which parameters are the most vulnerable. In this step, we
apply two constraints to the optimization:

• C1. Locating one weight per bit flip towards minimizing
our objective in Equation 3 significantly;

• C2. No co-occurrence in the same memory page among
the flipped bits.

Recall that when a DNN model is fed into the memory, the
network weights are loaded sequentially page-by-page, where
each page is fixed-length and stored contiguously. We can
view this procedure as loading a long vector by vectorizing the
model. Therefore, to guarantee we choose at most one weight
per memory page, we divide the network weight vector into
Nflip groups as equally as possible, as illustrated in Figure 3.
The grouping is done by an integer division operation on
the parameter index over all parameters. If the index of a
parameter is iw, the group ID of that parameter is determined
as iwdiv(4096∗Ngroup) where Ngroup is the number of pages
per bit flip, and div is integer division operation. Ngroup

depends on the chosen number of bit flips Nflip and can be
calculated as Ngroup = Nwdiv(4096 ∗ Nflip) for a DNN
model with number of parameters, Nw. After grouping the
parameters, we rank the weights per group based on the
absolute values in the gradient over ∆θ, i.e., |∇∆θF | where
| · | denotes the entry-wise absolute operator, in descending
order. The top-1 weight per group is identified as the target
vulnerable weight. Note that, given the Constraint (C2), Nflip

cannot be larger than the number of pages that the DNN model
weights occupy in the memory to guarantee there is at least
one full page in every group. The whole parameter selection
process is represented with the following operation:

M← Group Sort Select(|∇∆θF (∆θ∗,∆x∗)|,
Nflip,

′ descending′), (5)

Step 3. Adversarial fine-tuning Now, given a collection of
located vulnerable weights, denoted by M, we only need to
update these weights in backpropagation as follows:

∆θ = ∆θ∗ − η · [∇∆θF (∆θ∗,∆x∗)]M, (6)

5

where [·]M denotes a masking function that returns the gradi-
ents for the weights in M, otherwise 0’s, and η ≥ 0 denotes
a learning rate.

Step 4. Bit reduction To meet the physical constraints of the
Rowhammer, the final part of our attack procedure requires bit
reduction. Rowhammer can only flip a very low number of bits
in a 4KB memory page, and more than one faulty memory cell
almost never coexists within a byte. Therefore, we define a bit
reduction function as Floor(θ⊕ θ∗), where ⊕ denotes the bit-
wise summation, and function Floor rounds down the number
by keeping the most significant nonzero bit only. For instance,
letting θ = 11012 and θ∗ = 10102, then Floor(θ ⊕ θ∗) =
Floor(01112) = 1002. In this way, we ensure that only one bit
is modified in a selected weight while maintaining its change
direction and amount as much as possible.

B. Online Attack Phase: Flipping Bits in the Deployed Model

When we access a file from the secondary storage, it is first
loaded into the DRAM and when we close the file, the OS
does not delete the file from DRAM to make the subsequent
access faster. If the file is modified, the OS sets the dirty bit of
that modified page and writes back according to the configured
policy. Otherwise, the file remains cached unless evicted by
some other process or file. As Rowhammer is capable of
flipping bits in DRAM, we can use it in the online attack
phase to flip the weights of the DNN file as it is loaded in the
page cache. The weight file is divided into pages and stored
in the page cache. We can flip our target bits as identified by
the backdoored parameters θ∗, in Section IV-A. The OS does
not detect this change as it is directly made in hardware by a
completely isolated process, and it keeps providing the page
cached modified copy to the victim on subsequent accesses.
Thus, the attack remains stealthy. In the online phase, we need
to flip bits in the weight file in the required pages and page
offsets. We achieve this in three main steps.

1) Releasing the Flippy Rows: Flipping targeted bits in the
model weights requires manipulating the memory mapping of
the weight file and placing the target pages to previously found
flippy physical addresses. To control the memory mapping, we
exploit the per-CPU page frame cache. Page frame cache is
an optimization implemented in the Linux kernel to utilize
hardware caches better in the local CPU by reallocating the
recently unmapped page frames in first-in-last-out order [46].
As earlier works showed [5], [47], [48], an attacker process
can reliably map the victim page to the recently unmapped
pages by exploiting the page frame cache. This unmapping-
remapping process is shown by the pseudo-code in Listing 1.
Although we do not need bit flips in all pages of the weight
file, we need the target pages to be mapped to previously
determined flippy page locations. We use a buffer with size
baitPages × PAGESIZE to make sure the parameters
we do not target in the weight file are not mapped into the
flippy locations. The number of flippy pages and baitPages
should sum up to the total number of memory pages consumed
by the weight file.

Listing 1: Pseudo-code showing how pages can be forced into
a specific area in memory

buffer = mmap(baitPages * PAGESIZE)
munmap(flippyPageAddr, PAGESIZE)
for(i = 0; i < bait_pages; i++)

munmap(&buffer[i*PAGESIZE], PAGESIZE)

We match the target pages in the weight file to the flippy
locations and the remaining pages to the non-flippy locations
in our buffer. After obtaining a one-to-one mapping between
the weight file and our buffer, we start unmapping in the
reverse direction to fill the page frame cache.

2) Mapping the Model Weights to Flippy Rows: After
releasing the flippy pages and buffer, we immediately map
the whole weight file from start to end using mmap function.
The OS automatically maps the weight file to the unmapped
locations in the buffer in the right order. An example case
is shown in Figure 4 for a quantized ResNet20 model. Since
all physical addresses match with the released pages of our
buffer, there is a one-to-one mapping.

Fig. 4: Physical Address of released pages vs ResNet20 weight
file. First pages of the weight file are mapped to the last
released pages of our buffer.

Another way to bring only the target pages of the weight
file to the memory is by stating the file offset in the mmap
function and using fadvise with FADV_RANDOM flag to
prevent the neighboring pages of the file prefetched by the OS,
as proposed in [5]. However, in our experiments, we observe
that using fadvise does not reliably prevent prefetching.

3) Flipping Bits in the Weight File: Finally, the attacker
rows are accessed repeatedly to flip bits at the same offsets as
found in the offline phase but this time on the weight file. In
our experiments, we use n-sided Rowhammer pattern [17] with
7 aggressor rows on DDR4 systems to bypass TRR protection
and reproduce the bit flips found in the offline phase. Note
that additional bit flips can occur if more than one bit flip is
found within a single page. We evaluate the effect of these
additional bit flips in Section V.

After completing all the steps in Online Phase, the corrupted
weights stay in the memory, and the attacker is able to add
the pattern generated in Offline Phase to any image to trigger
the backdoor and misclassify the input in a targeted way.

6

C. Weight Quantization

The weights are stored as Nq-bit quantized values in
the memory as implemented in NVIDIA TensorRT [49], a
high-performance DNN optimizer for deployment that uti-
lizes quantized weights [50]. Essentially, a floating-point
weight matrix Wfp is re-encoded into Nq-bit signed inte-
ger matrix Wq as Wq = round(Wfp/∆w) where ∆w =
max(Wfp)/(2

Nq−1−1). In our experiments, weights are 8-bit
quantized and stored in two’s complement forms.

V. EVALUATION

A. Experimental Setup

To demonstrate the viability of our attack in the real
world, we implemented it on an 8-bit quantized ResNet-18
model trained on CIFAR-10 using PyTorch v1.8.1 library. The
clean model weights that are trained on CIFAR-10 are taken
from [37] for ResNet-18 and from [51](580 stars on GitHub)
for other ResNet models. Moreover, we experimented on larger
versions of ResNet models, such as ResNet50, trained on the
ImageNet data set. For the models trained on ImageNet, we
use pre-trained models of Torchvision library (9.1K stars on
GitHub), which has been downloaded 28 million times until
now [52]. We run the offline phase of our attack on NVIDIA
GeForce GTX 1080Ti GPU and Intel Core i9-7900X CPU.
Rowhammer experiments are implemented on DDR3 DRAM
of size 2 GB (M378B5773DH0-CH9) and DDR4 DRAM of
size 16 GB (CMU64GX4M4C3200C16). The online phase ex-
periments are conducted on a system running Ubuntu 20.04.01
LTS with a 5.15.0-58-generic Linux kernel installed, using a
DDR4 DIMM with part number CMU64GX4M4C3200C16.
The inference is done on an Intel Core i9-9900K CPU with
a Coffee Lake microarchitecture. DRAM row refresh period
is kept at 64ms which is the default value in most systems.
We use 7-sided Rowhammer to flip bits in the memory. We
will provide an explanation for how we decide the number of
aggressor rows in Section V-C.

We compare our approach with BadNet [32], and TBT [37]
as well as fine-tuning (FT) the last layer. We also include
the output of our Constrained Fine Tuning (CFT) without bit
reduction in Table II for comparison. We selected the baseline
methods with the aim of creating a backdoor-injected model.
We excluded the non-backdoor attacks, such as Deepham-
mer [5], and Terminal Brain Damage [4], in the performance
comparison since they only aim to degrade the accuracy
of the model. In contrast, we aim to keep the accuracy as
high as possible while increasing the Attack Success Rate.
For the offline phase results, we keep all the bit flips in
the weight parameters assuming they are all viable. In the
online phase results, we keep the bits that are possible to be
flipped by Rowhammer and exclude the others. We use 128
images from the unseen test data set for all the experiments in
CIFAR-10. TA and ASR metrics are calculated on an unseen
test data set of 10K images. In all experiments, we used
α = 0.5 for Algorithm 1. The trigger masks are initialized as
black square on the bottom right corner of the clean images

with sizes 10x10 and 73x73 on CIFAR-10 and ImageNet,
respectively. ϵ in Equation 4 is chosen as 0.001. For the
ImageNet experiments, we use 1024 images from the unseen
test data set to cover all 1000 classes. TA and ASR metrics
are calculated on unseen test data set of 50K.

B. Evaluation Metrics

Number of Bit Flips (Nflip): As in [4], [5], [7], [37], the
first metric we use to evaluate our method is Nflip, which
indicates how many bits are flipped in the new version of
the model. The Nflip has to be as low as possible because
only a limited number of bit locations are vulnerable to the
Rowhammer attack in DRAM. As the Nflip increases, the
probability of finding a right match of vulnerable bit offsets
decreases. Nflip is calculated as Nflip =

∑L
l=1 D(θ[l], θ∗[l]),

where D is the hamming distance between the parameters θ[l]

and θ∗[l] at the l-th layer in the network with L layers in total.
DRAM Match Rate (rmatch): After a Rowhammer-specific

bit-search method runs, the outputs are given as the locations
of target bits in a DNN model. However, not all of the bit
locations are flippable in the DRAM. Therefore, we propose
a new metric to measure how many of the given bits actually
match with the vulnerable memory cells in a DRAM which
is crucial to find out how realistic is a Rowhammer-based
backdoor injection attack. rmatch is calculated as, rmatch =
nmatch

Nflip
×(1− δ

S)×100 where nmatch is the number of matching
bit flips, Nflip is the total number of bit flips, S is the number
of bits in a page, and δ is the number of accidental bit flips
within a page. Since the bit flip profile varies among different
DRAMs, even between the same vendors and models, rmatch

is a device-specific metric.
Test Accuracy (TA): In order to evaluate the effect of

backdoor injection to the main task performance we use Test
Accuracy as one of the metrics. Test Accuracy is defined as
the ratio of correct classifications on the test data set with
no backdoor trigger added. Ideally, we expect the backdoor
injection methods to cause minimal to no degradation in the
Test Accuracy in the target DNN models.

Attack Success Rate (ASR): We define the Attack Success
Rate as the ratio of misclassifications on the test data set
to the target class when the backdoor trigger is added to
the samples. Attack Success Rate indicates how successful a
backdoor attack is on an unseen data set.

C. Rowhammer Attack on Deployed Model - Online

We experiment the online phase of the attack on DDR3
and DDR4 DRAM chips. We empirically observe that when
there are multiple bits required to be flipped on the same 4KB
page in a particular direction ({0→ 1} or {1→ 0}), there is
no matching target page in the 128 MB Rowhammer profile.
This observation shows that multiple bit flips at desired page
offsets and bit-flip direction is an unrealistic assumption. On
the other hand, we observe that there is always a matching
page in the profiled memory buffer with a bit flip in the
desired location and flip direction if there is at most one bit flip
in the memory page. This observation is consistent with our

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

of Aggressor Rows

0

500

1000
A

ve
ra

ge
 #

 o
f

 B
it

F
lip

s

Fig. 5: Average number of bit flips on an 8MB buffer vs the
number of sides in an n-sided Rowhammer attack.

probability analysis in Section IV-A2. Apart from the targeted
bit flips, we observed that some DDR4 DRAMs with large
average bit flips in a page give accidental bit flips in addition
to the target offsets which reduces the rmatch.

Effect of Number of Attacker Rows on Bit flips: The idea
of a multi-sided Rowhammer attack is that instead of a single
row above and below the victim row being read, another victim
is created above the attacker row, and another attacker above
the new victim a variable number of times. Figure 5 shows
how the number of attacker rows changes the bit flip rate.

Figure 6 shows that by reducing the number of aggressors in
n-sided Rowhammer from 15 to 7, we can reduce the number
of additional flips to 4 bits per target page. Therefore, we use
7-sided Rowhammer in the later experiments. Random bit flips
outside the target location have a very limited effect on both
TA and ASR since the target model weights are quantized [4].

010 101 111 000
Agressor-Victim-Agressor pattern

0

10

20

30

40

A
ve

ra
ge

 #
 F

lip
s

P
er

 P
ag

e

Fig. 6: Average number of bit flips per page for 15-sided (blue)
and 7-sided (red) Rowhammer attack patterns.

As shown in Table II, we get 99.9% rmatch for every DNN
model we attack with CFT+BR since all of the required bit
flips we need are in separate pages. Whereas BadNet, FT, TBT,
and CFT, have very low numbers achieving as low as 1 bit
flip since they require multiple-bit flips with specific locations
and flip directions in the same memory page.

D. CIFAR-10 Experiments

We experiment with our proposed method on ResNet18,
ResNet20, and ResNet32 trained on CIFAR-10 along with
the baseline methods, such as BadNet, FT, and TBT. We
also compare our partial method, CFT, with our complete
method (CFT+BR) which includes the Bit Reduction. During
the iterations of CFT+BR, we observed that the total loss
spikes after each Bit Reduction and quickly decreases again
and eventually converges to a solution θ+∆θ as described in
Equation 6. Figure 7 shows the loss progress after each epoch
with one batch of data while optimizing a constrained weight
perturbation ∆θ to a ResNet18 model on the CIFAR-10 data
set. After every 100 iterations, we apply Bit Reduction, which

Fig. 7: Total loss graph at every training iteration during the
backdoor injection to the ResNet18

causes spikes in the loss curve. We compare our method with
baselines for both phases since our attack scenario includes
offline and online phases. Recall that in the offline phase, the
optimization takes place to find the vulnerable bit locations
and generate a trigger pattern. First, we evaluate the modified
models with the corresponding trigger patterns. Then, for
each modified part of the weight parameters, we look for a
matching target page location on the profiled memory, which
constitutes the online phase. If multiple bits need to be flipped
in the memory, we choose the one with the largest gradient
value so that we get the maximum possible performance
from the baselines. Finally, DRAM Match Rate rmatch is
calculated as explained in Section V-B. The experiment results
are summarized in Table II.

BadNet and FT have no control over the Nflip since they do
not introduce any constraints during the optimization. There-
fore, in the offline phase, BadNet requires up to one and a half
million bit flips to inject a backdoor successfully. Although
FT modifies only the last layer while keeping the other layers
constant, meaning fewer bit flips than BadNet, we observe that
up to 8,667 bits have to be flipped. TBT has control on the
number of modified parameters which enables partial control
on the Nflip since the number of modified parameters limits
the maximum value Nflip can get. Therefore, we select the
results that reproduce their claimed performance in the original
work [37] without modifying too many weight parameters and
increasing the Nflip too much, and thus, decreasing rmatch

further. In the offline phase, TBT finds a much smaller number
of bits compared to BadNet and FT due to the limit on the
modified parameters. Our experiments show that the CFT+BR
method successfully injects a backdoor into ResNet20 model
with 91.24% TA and 94.62% ASR by flipping only 10 bits out
of 2.2 million bits in the DRAM. In ResNet32 and ResNet18,
CFT+BR achieves 91.46% and 95.26% ASR, respectively,
with a maximum of 1.66% degradation in the TA. We observe
that Nflip values in BadNet and FT depend heavily on mode
size. As the total number of bits increases, they require more
bit-flips to achieve similar performance. On the other hand, we
do not observe a significant dependence on the model size in
TBT, CFT, and CFT+BR methods in terms of Nflip, TA, and
ASR. In BadNet, FT, and TBT, the bit flips are concentrated
within the same pages. Especially FT and TBT targets on
the last layer of the DNN models. Since the last layer of the
Resnet20, ResNet32, and ResNet18 models occupy only one

8

TABLE II: Comparison of our methods CFT, CFT+BR with the baseline methods BadNet, FT, and TBT on CIFAR10 [53]
with ResNet-20/32/18, and ImageNet [54] with ResNet-34/50. Our proposed CFT+BR results are written in bold. Note that the
percentage of the backdoor parameter bits (∆θ) that are actually flippable, rmatch, must be near 100% for a viable backdoor
injection attack using Rowhammer.

Offline Phase Online Phase
Dataset Net Method Nflip TA(%) ASR(%) Nflip TA(%) ASR(%) rmatch(%)

CIFAR10

ResNet20
Acc: 91.78%
#Bits: 2.2M
#Pages: 69

BadNet 172,891 86.96 99.98 33 91.76 2.63 0.02
FT 2,238 84.36 97.10 1 91.72 2.90 0.04

TBT 44 86.61 95.43 1 91.72 4.71 2.27
CFT 22 90.09 99.55 5 91.79 14.40 22.73

CFT+BR 10 91.24 94.62 10 89.04 92.67 99.99

ResNet32
Acc: 92.62%
#Bits: 3.7M
#Pages: 116

BadNet 246,004 88.60 99.99 53 92.61 7.32 0.02
FT 2318 81.87 90.59 1 92.65 8.57 0.04

TBT 210 81.90 89.66 1 92.66 8.42 0.48
CFT 39 90.25 98.75 10 92.41 20.22 25.64

CFT+BR 95 91.77 91.46 95 89.56 89.58 99.99

ResNet18
Acc: 93.10%
#Bits: 88M

#Pages: 2750

BadNet 1,493,301 87.61 99.88 416 93.06 12.45 0.03
FT 8,667 88.80 95.34 1 92.20 34.16 0.01

TBT 95 82.87 88.82 1 92.60 48.12 1.05
CFT 42 92.39 99.90 11 91.52 0.36 26.19

CFT+BR 99 92.95 95.26 99 90.71 93.30 99.99

ImageNet

ResNet34
Acc: 73.31%
#Bits: 172M
#Pages: 5375

BadNet 441,047 70.81 99.73 100 70.39 0.009 0.02
FT 54,726 68.30 99.14 11 70.95 0.18 0.02

TBT 553 72.69 99.86 1 70.97 0.05 0.18
CFT 1509 70.25 99.76 388 69.93 0.10 25.71

CFT+BR 1463 70.28 72.92 1463 68.59 71.42 99.99

ResNet50
Acc: 76.13%
#Bits: 184M
#Pages: 5750

BadNet 359,516 73.98 99.11 129 66.43 0.05 0.04
FT 93,778 68.43 96.52 12 73.77 0.09 0.01

TBT 543 75.60 99.98 1 73.78 0.10 0.18
CFT 1562 70.58 99.99 391 66.71 4.92 25.03

CFT+BR 1475 70.64 98.22 1475 68.94 96.20 99.99

memory page in DRAM, the bit-flip locations found in the
offline phase of FT and TBT reside within a single page. For
instance, 210 bit-flips found by TBT on ResNet32 are all on
the same page. However, as we mention in Section IV-A2,
only the pages with one targeted bit location can be found in
DRAM in practice. Therefore, we choose the bit flip with the
largest gradient in a memory page and keep it modified and
return the other parameters to their original values. Finally,
we evaluate their performance on the test data set. In the
ResNet20 and ResNet32 models, we observe that the ASR
of BadNet, FT, and TBT drops down below 10% while the
Test Accuracy values increase back to their original values.
We claim that the significant decrease in ASR values can be
explained by the diffusion effect of optimizing the parameters
in an unconstrained way. When the attack is implemented on
DRAM using Rowhammer, rmatch values of BadNet, FT, and
TBT are lower than 3% for every DNN model. In CFT, rmatch

is relatively higher than the other baseline methods since it
modifies only one parameter in a page. However, it does not
put a constraint on the number of bit flips within a byte during
the optimization. Therefore, the attack performance degrades
drastically in practice. In all experiments, CFT+BR has 99.9%
rmatch since it already considers the bit locations that can be
flipped during the attack. Since the bit flips are sparse across
different memory pages in CFT+BR, 100% of the bit flips can
actually be flipped. A small number of bits may be flipped in
random locations, but it does not affect the performance of the

attack significantly. We show that lower rmatch values lead to
low ASR in backdoor injection attacks using Rowhammer.

E. ImageNet Experiments

We also compare our method with the baseline methods on
models trained on the ImageNet ILSVRC2012 Development
Kit [54] data set, which consists of 1000 classes of visual
objects. We used pre-trained ResNet34 and ResNet50 from the
model zoo [52] as the target models. ResNet34 and ResNet50
include 172 million and 184 million bits, respectively. Note
that both the model and data set sizes are significantly larger
compared to our CIFAR-10 experiments. As the TA and ASR,
we use top-1 accuracy results. The results are summarized in
Table II. The same comparison methods we apply in CIFAR-
10 are valid in ImageNet experiments as well.

In the offline phase of the attacks, we observe that each
method shows a different response to the increase in the model
and data set sizes. For instance, BadNet and FT require more
than 350K and 50K, respectively. Compared to CIFAR-10
models, BadNet is not affected significantly. However, Nflip

for FT becomes 17 times larger on average on the ImageNet
models. TBT locates around 550 Nflip on the ResNet34 and
ResNet50 models in the offline phase, which is 5 times larger
on average than the CIFAR-10 experiments. CFT and CFT+BR
locate around 1500 Nflip on the ResNet34 and ResNet50
models in the offline phase, meaning 45 times and 22 times
larger for CFT and CFT+BR, respectively.

9

In the online phase, we observe that none of the baseline
methods has a significant attack performance. For instance, in
the BadNet method, although the model sizes increase 5.5
times, the number of modified pages increases only 1.5 times
on average. Similarly, TBT modifies only one page in the
last layer of the ResNet34 and ResNet50 models, even though
the last layers of the models have more than 10 pages. This
clearly shows that as the model size increases, the density of
bit flips required by the baseline models increases, meaning the
attack tends to focus on certain regions instead of uniformly
distributing the bit flips. The high density of the bit flips leads
to rmatch rates as low as 0.02%. Although FT modifies most
of the pages in the last layer, the fact that the bit locations are
not optimized at the beginning causes vanishing ASR. Overall,
we observe that the claimed ASRs can be achieved only when
rmatch is large enough. Although CFT achieves much larger
rmatch values than the other baseline methods, lacking Bit
Reduction makes the attack focus on multiple bit flips within
8-bit parameters, which, in return, causes lower than 5% ASR
on the models trained with ImageNet data set. In contrast,
CFT+BR can inject the backdoor to ResNet models with up
to 96.2% ASR and a maximum of 7.2% degradation in the TA,
which makes it the best-performing backdoor injection attack
compared to the baseline methods. These results show that
our approach generalizes well to larger data sets and models.
Note that although Nflip increases as the model gets larger
in CFT+BR, it is still possible to flip these bits with 99.99%
rmatch due to the sparse distribution.

F. Generalization to Other DNN Architectures

We experiment on other DNN architectures, such as
VGG11, VGG16, to show that our attack generalizes. We
show that CFT+BR can successfully locate vulnerable bits and
achieves over 90% Attack Success Rate in VGG architectures.
The results are summarized in Table III.

TABLE III: CFT+BR experiment results on VGG architectures

Model Base Acc TA [%] ASR [%] Nflip

VGG11 92.35 92.70 100 30
VGG16 92.68 92.57 90.85 100

VI. POTENTIAL COUNTERMEASURES

We analyze some of the prominent countermeasures pro-
posed for mitigating bit-flip attacks against DNN models.

A. Prevention-Based Countermeasures

Binarization-Aware Training [56]2 is a method that uses
Binarized Neural Networks (BNNs) [57], [58] to increase the
resistance of DNNs against the bit flip attacks. This method
significantly reduces the network size. For instance, a binarized
ResNet-32 model occupies only 65 pages in the memory.
Although 65 bit flips are not enough to inject a backdoor

2Binarization-Aware Training and Piecewise Weight Clustering implemen-
tations are taken from https://github.com/elliothe/BFA.

using Rowhammer, Nflip cannot be larger than the number
of pages occupied by the model. Therefore, our experiments
show that using BNNs is an effective defense against our
attack since it aggressively decreases the size of the network
and, consequently, the maximum Nflip. However, reducing
the model size causes accuracy degradation as a performance
overhead. Note that BNNs may still be vulnerable to other fault
attacks which do not require the same physical constraints,
such as sparse faulty bit locations.

Piecewise Weight Clustering (PWC) [56] is a relaxation of
BNNs. With PWC, an additional penalty term is introduced
to the inference loss function, which forces model weight
distribution to form two clusters. We experiment with our
attack against a ResNet32 model trained with PWC penalty
term in the loss function. We observe a strengthened trade-off
between the TA and ASR during the optimization.For instance,
the ASR drops down to 43.42% when TA is 89.66% with 112
Nflips. On the other hand, our attack achieves 98.49% ASR
while degrading the TA down to 9.9% with the same Nflips.
The results show that training the model with PWC does
not protect against accuracy degradation and even targeted
misclassification attacks. However, it makes it harder to inject
stealthy backdoors.

B. Detection-Based Countermeasures

Possible defense techniques focusing on detecting the at-
tacks on the model weights [59]–[62] come with an overhead
because they need to be deployed together with the model into
the machine learning product.

DeepDyve [59] is a dynamic verification method that uses
a checker model along with the original model for mitigating
the transient faults in the inference. It assumes both models
predict the same results for the same inputs most of the time.
When the results of the two models are the same, the result is
accepted immediately. However, if the results are different,
the inference is repeated, and the second result from the
original model is accepted. DeepDyve assumes the fault in the
model is transient and does not appear in consecutive queries.
However, the bit flips introduced by Rowhammer stay in the
memory until being reloaded from the disk. Since the transient
assumption does not hold, even if a checker model raises an
alarm and repeats the inference, the new inference is made by
the backdoor-injected model and will not be detected.

Weight Encoding [60] proposes additional matrix multipli-
cation and weight extraction. Thus, this method can detect
only the topmost sensitive layers in the network to keep the
overhead low. However, our attack can target all layers to inject
a backdoor. Therefore, the spatial locality assumption does not
hold with our attack. Using the overhead numbers in [60] for
ResNet-34, we estimate the time and storage overhead against
our attack. Since the time complexity of weight encoding
dj = r(yj), yj = ϕ(

∑N−1
i=0 Bi · Kij) is O(N2), where B is

ZN , and K is RNxM , the estimated execution time overhead
of the method is 834.27 seconds. Since the storage complexity
of the Weight Encoding is linear, the storage cost for ResNet34
is estimated as (0.141/8192) × 21779648 = 374.86MB,

10

https://github.com/elliothe/BFA

Label: car

Pred.: car

Label: frog

Pred.: frog

Label: cat

Pred.: cat

Label: car

Pred.: car

Label: car

Pred.: car

Label: frog

Pred.: frog

Label: cat

Pred.: cat

Label: car

Pred.: car

Clean Inputs Trigger Added Inputs

Label: car

Pred.: car

Label: frog

Pred.: frog

Label: cat

Pred.: cat

Label: car

Pred.: car

Label: car

Pred.: bird

Label: frog

Pred.: bird

Label: cat

Pred.: bird

Label: car

Pred.: bird

Clean Inputs Trigger Added Inputs

Clean Model Backdoored Model

Fig. 8: The change in GradCAM [55] heatmaps that belong to ResNet18 before the attack (left) and after the attack (right).
The focus of the model shifts through the trigger pattern if it is backdoored.

which is 446% storage overhead, showing that the proposed
method is not scalable.

RADAR [61] is a checksum-based detection method during
inference. It divides the weights into groups and gets the
checksum of the most significant bits of parameters in each
group. The original checksum values of the parameters are
stored along with the model and are validated with the
original signatures at every inference time. The optimization
constraints can be further increased to avoid flipping the MSB
of the weight parameters in our attack, which can bypass the
detection. Assuming linear time complexity, time overhead
goes up to 40.11% for full-size bit protection in ResNet20.

SentiNet [62] filters the adversarial inputs using GradCAM
heatmaps [55]. We use the GradCAM implementation from
[63] to analyze the output of four sample images that are
labeled as car, frog, cat and car respectively (See Figure 8.).
Before the attack, the model correctly classifies all images
with or without the trigger pattern. If the trigger pattern does
not overlap with the major features in the image, e.g. frog
and cat, the main focus of the model stays on the object.
However, if the trigger pattern overlaps with the main features,
e.g. the wheel of the car, the focus is shifted towards the
trigger pattern. After the attack, regardless of the trigger and
object overlap, the focus of the model shifts towards the trigger
pattern, and the model misclassifies all images to the target
class, bird. Therefore, although a GradCAM-based approach
can possibly filter the adversarial inputs, it will also produce
false positives even if the model is clean and works correctly.

C. Recovery-based Countermeasures

Weight Reconstruction: Li et al. [64] propose Weight
Reconstruction3 to recover the clean network after a bit flip
attack occurs. Weight Reconstruction aims to recover from an
accuracy degradation caused by the attack. After a bit flip
occurs in a weight parameter, the effect of the change is
distributed onto other parameters to reduce the overall effect
on the model performance. We experiment with our CFT+BR
attack against a ResNet32 defended by Weight Reconstruction

3Weight Reconstruction implementation is taken from https://github.com/
zlijingtao/DAC20 reconstruction.

to evaluate the effectiveness of the proposed defense method.
We applied our attack in two different scenarios. In the first
scenario, the attacker is not aware that the model is defended
by Weight Reconstruction and applies the offline phase of
the attack as described in Section IV-A3. As a baseline, our
attack achieves 91.46% ASR and 97.77% TA by flipping 95
bits in the memory. After applying Weight Reconstruction,
we observed that ASR and TA become 32.89% and 91.02,
respectively. In the second scenario, the attacker is aware
that the model is defended by Weight Reconstruction and
applies the offline phase of the attack against a model with
Weight Reconstruction. However, if the attacker is aware
of the defense and applies CFT+BR on a defended model,
our attack successfully bypasses Weight Reconstruction by
achieving 94.04% ASR and 89.51% TA. Therefore, the Weight
Reconstruction approach does not protect the models when the
attacker knows the applied defense.

VII. RELATED WORKS

a) Rowhammer Attacks on DNNs: We compare our work
with Terminal Brain Damage [4] and Deephammer [5] in terms
of the following factors:

Attacker’s Objectives: The main difference between our
work and previous works is the goal of the attack. In both
[4] and [5], the attacker’s objective is to degrade the inference
accuracy of the model on legitimate inputs and cause a denial
of service. In contrast, our attack objective in this work is to
keep the inference accuracy for legitimate inputs the same and
misclassify all trigger-added inputs to a target class in stealth
by using a unified objective function given in Equation 3.

Assumptions: All [4], [5], and our work assume the attack
takes place in a cloud environment where the model is loaded
into system’s shared memory and stays unchanged. Unlike [5],
we do not assume the availability of huge page configuration
to bypass virtual to physical translation.

Attacker Capabilities: Same as our attack, [5] and [4]
assume the attacker knows the model architecture and parame-
ters. [4] also considers black-box setting with random bit flips.
Since our attack objective is more sophisticated, our attack is
not applicable in a black-box setting.

11

https://github.com/zlijingtao/DAC20_reconstruction
https://github.com/zlijingtao/DAC20_reconstruction

Attack Time: [5] configures the hammering time for each
row as 190ms. Since [4] only simulates the attack, they assume
it is 200ms in the calculations. In our setup, it takes 800ms to
hammer one row using a 15-sided pattern during the profiling
phase and 400ms using a 7-sided pattern during the online
phase. Note that previous works consider only double-sided
Rowhammer, which takes less time but is not effective on
DDR4 chips with TRR mitigation. Total online attack time
varies between different models and can be estimated by
multiplying the hammering time by Nflip.

Stealthiness/Detectability: Due to the difference in the at-
tack objectives, the stealth of the attacks is also different. For
instance, Test Accuracy after the attack on VGG16 is given as
around 10% in both [4] and DeepHammer. However, we can
preserve the Test Accuracy at over 92% after our attack while
being able to misclassify over 90% of all instances with an
attacker-generated trigger pattern. Since we can preserve the
Test Accuracy close to the base accuracy of the models, our
attack is stealthy.

Comparison of Accuracy Degradation: Although the goal of
backdoor injection is not accuracy degradation, the resulting
degradation on trigger-added inputs is comparable to [4] and
[5]. In VGG16 trained on CIFAR10, when we add trigger
pattern to all images, we see the accuracy of the model to be
18% (an 80% relative accuracy degradation from baseline).
Alternatively, [5] and [4] claim relative accuracy degradations
of VGG16 to be 88% and 90%, respectively (after the attack
the models only produce a correct output 10% of the time).

b) Accuracy Degradation Attacks: Bit-Flip Attack [65]
degrades the accuracy of DNN models to random guess using
a chain of bit flips. Targeted Bit-Flip Attack [66] is shown
to be capable of misclassifying the samples from single or
multiple classes to a target class on quantized DNN models.
Although these works show that DNN model performance
can be damaged permanently by flipping a limited number
of bits in the weight parameters, these attacks do not make
use of an attacker-controlled backdoor trigger. Therefore, they
have very limited control over stealthiness. A binary integer
programming-based approach was proposed by Bai et al. [7]
to find the minimum number of bit flips required to make the
model misclassify a single image sample into a targeted class.

c) ML Backdoor Attacks: Garg et al. [67] observed that
adversarial perturbations on the weight space of the trained
models could potentially inject Backdoor, but it requires either
social engineering or full privileged access to replace the target
model with the backdoored model. Recently, [37] and [33]
showed that backdoor attacks could be implemented by chang-
ing only a small number of weight parameters. However, both
of the works assume any bit location in the memory can be
flipped, which is not practical. Therefore, the practicality of
software-based backdoor injection attacks during the inference
phase is still an open question due to the practical constraints
that have been overlooked in previous works.

VIII. DISCUSSION

Effect of Huge Pages: We assume huge pages are not
available since they give an advantage for finding contiguous
memory in physical address space. Even though the target
model uses huge pages, the memory controller would still
fragment the huge page into 8 KB rows in DRAM due to the
fixed row size. Also, each chunk is mapped into different banks
in order to increase parallel access. For example, if there are 64
banks in the system, a 2 MB huge page would be fragmented
into 64 chunks and 4 neighbor rows in the DRAM. Although
this may hurt the n-sided Rowhammer pattern, it would still be
possible to sandwich each chunk and do Rowhammer. Note
that, in memory systems with multiple DIMMs, and ranks,
the number of banks also increases, which would decrease the
size of the chunks down to a single row. In that case, a regular
double-sided or n-sided Rowhammer attack would still work.
Since an attacker can choose to profile 4 KB pages in DRAM,
finding 512-bit flips in 2 MB would still be practical.

Application on Other Security Critical Tasks The proposed
attack method is a generic approach and agnostic to the down-
stream tasks. Therefore, it would work on models used in other
safety-critical tasks, such as voice recognition applications.

IX. CONCLUSION

We analyzed the viability of a real-world DNN backdoor
injection attack. Our backdoor attack scenario applies to
deployed models by flipping a few bits in memory assisted by
the Rowhammer. Our initial analysis performed on hardware
showed that earlier proposals fall short in assuming a realistic
fault injection model. We devised a new backdoor injection
attack method that adopts a combination of trigger pattern
generation and sparse and uniform weight optimization. In
contrast to earlier proposals, our technique uses all layers and
combines trigger pattern generation, target neuron selection,
and fine-tuning model parameter weights in the same train-
ing loop. Since our approach targets the weight parameters
uniformly, it is guaranteed that no more than one bit in a
memory page is flipped. Further, we introduced new metrics
to capture a realistic fault injection model. This new approach
achieves a viable solution to target real-life deployments: on
CIFAR10 (ResNet 18, 20, 32 models) and ImageNet (Resnet34
and 50 models) on real hardware by running the Rowhammer
attack achieving Test Accuracy and Attack Success Rates as
high as 92.95% and 95.26%, respectively. We also showed that
our attack works on other architectures, such as VGG11 and
VGG16. Finally, we evaluated the prominent defense tech-
niques against our backdoor injection attack. We concluded
that the proposed countermeasures are either not effective or
introduce significant overhead in terms of time and storage.

ACKNOWLEDGEMENTS

We thank our anonymous reviewers for their insightful
feedback. This work is supported by the National Science
Foundation, under grants CNS-1814406, CNS-2026913, and
CCF-2006738, and by the U.S. Department of State, Bureau
of Educational and Cultural Affair’s Fulbright Program.

12

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[3] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 427–436.

[4] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, , “Termi-
nal brain damage: Exposing the graceless degradation in deep neural
networks under hardware fault attacks,” in 28th {USENIX} Security
Symposium ({USENIX} Security 19), 2019, pp. 497–514.

[5] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the intelli-
gence of deep neural networks through targeted chain of bit flips,” in
29th {USENIX} Security Symposium ({USENIX} Security 20), 2020,
pp. 1463–1480.

[6] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault injection attack on deep neural
network,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2017, pp. 131–138.

[7] J. Bai, B. Wu, Y. Zhang, Y. Li, Z. Li, and S.-T. Xia, “Targeted attack
against deep neural networks via flipping limited weight bits,” arXiv
preprint arXiv:2102.10496, 2021.

[8] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, pp. 361–372, 2014.

[9] J. S. Kim, M. Patel, A. G. Yağlıkçı, H. Hassan, R. Azizi, L. Orosa,
and O. Mutlu, “Revisiting rowhammer: An experimental analysis of
modern dram devices and mitigation techniques,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 638–651.

[10] L. Orosa, A. G. Yaglikci, H. Luo, A. Olgun, J. Park, H. Hassan,
M. Patel, J. S. Kim, and O. Mutlu, “A deeper look into rowhammer’s
sensitivities: Experimental analysis of real dram chips and implications
on future attacks and defenses,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 1182–1197.

[11] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip feng shui: Hammering a needle in the software stack.” in USENIX
Security symposium, vol. 25, 2016, pp. 1–18.

[12] V. Van Der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
rowhammer attacks on mobile platforms,” in Proceedings of the 2016
ACM SIGSAC conference on computer and communications security,
2016, pp. 1675–1689.

[13] K. Mus, S. Islam, and B. Sunar, “Quantumhammer: a practical hybrid
attack on the luov signature scheme,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020,
pp. 1071–1084.

[14] S. Islam, K. Mus, R. Singh, P. Schaumont, and B. Sunar, “Signature
correction attack on dilithium signature scheme,” in 2022 IEEE 7th
European Symposium on Security and Privacy (EuroS&P). IEEE, 2022,
pp. 647–663.

[15] M. Fahr Jr, H. Kippen, A. Kwong, T. Dang, J. Lichtinger, D. Dachman-
Soled, D. Genkin, A. Nelson, R. Perlner, A. Yerukhimovich et al.,
“When frodo flips: End-to-end key recovery on frodokem via rowham-
mer,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, 2022, pp. 979–993.

[16] K. Mus, Y. Doröz, M. C. Tol, K. Rahman, and B. Sunar, “Jolt:
Recovering tls signing keys via rowhammer faults,” Cryptology ePrint
Archive, 2022.

[17] P. Frigo, E. Vannacc, H. Hassan, V. Van Der Veen, O. Mutlu, C. Giuf-
frida, H. Bos, and K. Razavi, “Trrespass: Exploiting the many sides of
target row refresh,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 747–762.

[18] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and K. Razavi,
“Smash: Synchronized many-sided rowhammer attacks from javascript,”
in 30th {USENIX} Security Symposium ({USENIX} Security 21), 2021.

[19] P. Jattke, V. Van Der Veen, P. Frigo, S. Gunter, and K. Razavi,
“Blacksmith: Scalable rowhammering in the frequency domain,” in 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp. 716–
734.

[20] H. Hassan, Y. C. Tugrul, J. S. Kim, V. Van der Veen, K. Razavi, and
O. Mutlu, “Uncovering in-dram rowhammer protection mechanisms:
A new methodology, custom rowhammer patterns, and implications,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 1198–1213.

[21] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correcting
codes: On the effectiveness of ecc memory against rowhammer attacks,”
in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 55–71.

[22] L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and
O. Mutlu, “Are we susceptible to rowhammer? an end-to-end method-
ology for cloud providers,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 712–728.

[23] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips, one
cloud flops: Cross-vm row hammer attacks and privilege escalation,” in
25th {USENIX} security symposium ({USENIX} security 16), 2016, pp.
19–35.

[24] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos,
and K. Razavi, “Throwhammer: Rowhammer attacks over the net-
work and defenses,” in 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), 2018, pp. 213–226.

[25] M. Lipp, M. Schwarz, L. Raab, L. Lamster, M. T. Aga, C. Maurice, and
D. Gruss, “Nethammer: Inducing rowhammer faults through network
requests,” in 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE, 2020, pp. 710–719.

[26] S. Qazi, Y. Kim, B. Boichat, E. Shui, and M. Nissler, “Introducing half-
double: New hammering technique for dram rowhammer bug,” https:
//github.com/google/hammer-kit, 2021.

[27] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 245–261.

[28] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533–536, 1986.

[30] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks
by backdooring,” in Proceedings of the 27th USENIX Conference on
Security Symposium, ser. SEC’18. USA: USENIX Association, 2018,
p. 1615–1631.

[31] M. Shafieinejad, N. Lukas, J. Wang, X. Li, and F. Kerschbaum, “On the
robustness of backdoor-based watermarking in deep neural networks,”
in Proceedings of the 2021 ACM Workshop on Information Hiding and
Multimedia Security, ser. IHamp;MMSec ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 177–188. [Online].
Available: https://doi.org/10.1145/3437880.3460401

[32] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[33] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “Proflip: Targeted trojan
attack with progressive bit flips,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2021,
pp. 7718–7727.

[34] Y. Liu, S. Ma, Y. Aafer, W. Lee, J. Zhai, W. Wang, and
X. Zhang, “Trojaning attack on neural networks,” in 25th Annual
Network and Distributed System Security Symposium, NDSS 2018,
San Diego, California, USA, February 18-21, 2018. The Internet
Society, 2018. [Online]. Available: http://wp.internetsociety.org/ndss/
wp-content/uploads/sites/25/2018/02/ndss2018 03A-5 Liu paper.pdf

[35] E. Bagdasaryan and V. Shmatikov, “Blind backdoors in deep learning
models,” arXiv preprint arXiv:2005.03823, 2020.

[36] J. Clements and Y. Lao, “Hardware trojan attacks on neural networks,”
arXiv preprint arXiv:1806.05768, 2018.

[37] A. S. Rakin, Z. He, and D. Fan, “Tbt: Targeted neural network
attack with bit trojan,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 13 198–13 207.

[38] H. Yu, K. Yang, T. Zhang, Y.-Y. Tsai, T.-Y. Ho, and Y. Jin, “Cloudleak:
Large-scale deep learning models stealing through adversarial exam-
ples.” in NDSS, 2020.

[39] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in

13

https://github.com/google/hammer-kit
https://github.com/google/hammer-kit
https://doi.org/10.1145/3437880.3460401
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-5_Liu_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-5_Liu_paper.pdf

Proceedings of the 2017 ACM on Asia conference on computer and
communications security, 2017, pp. 506–519.

[40] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016, pp. 601–618.

[41] J. R. Correia-Silva, R. F. Berriel, C. Badue, A. F. de Souza, and
T. Oliveira-Santos, “Copycat cnn: Stealing knowledge by persuading
confession with random non-labeled data,” in 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2018, pp. 1–8.

[42] M. Juuti, S. Szyller, S. Marchal, and N. Asokan, “Prada: protecting
against dnn model stealing attacks,” in 2019 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2019, pp. 512–527.

[43] S. Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gulmezoglu, T. Eisen-
barth, and B. Sunar, “{SPOILER}: Speculative load hazards boost
rowhammer and cache attacks,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 621–637.

[44] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“{DRAMA}: Exploiting {DRAM} addressing for {Cross-CPU} at-
tacks,” in 25th USENIX security symposium (USENIX security 16), 2016,
pp. 565–581.

[45] A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating software
mitigations against rowhammer: a surgical precision hammer,” in Inter-
national Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 2018, pp. 47–66.

[46] D. P. Bovet and M. Cesati, Understanding the Linux Kernel: from I/O
ports to process management. ” O’Reilly Media, Inc.”, 2005.

[47] A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Expl-
frame: Exploiting page frame cache for fault analysis of block ciphers,”
in 2020 Design, Automation Test in Europe Conference Exhibition
(DATE), 2020, pp. 1303–1306.

[48] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Rambleed: Reading
bits in memory without accessing them,” in 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020, pp. 695–711.

[49] S. Migacz, “8-bit inference with TensorRT,” NVIDIA GPU Technology
Conference, 2017.

[50] NVIDIA, “Tensorrt documentation,” https://docs.nvidia.com/
deeplearning/tensorrt, 2021, accessed: 2021-05-25.

[51] Y. Idelbayev, “Proper ResNet implementation for CIFAR10/CIFAR100
in PyTorch,” https://github.com/akamaster/pytorch resnet cifar10, 2019,
accessed: 2021-05-26.

[52] Torchvision, https://pypi.org/project/torchvision/, 2021, accessed: 2021-
05-26.

[53] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[54] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[55] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[56] Z. He, A. S. Rakin, J. Li, C. Chakrabarti, and D. Fan, “Defending and
harnessing the bit-flip based adversarial weight attack,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 14 095–14 103.

[57] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” Advances in neural information processing
systems, vol. 29, 2016.

[58] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision. Springer, 2016, pp. 525–542.

[59] Y. Li, M. Li, B. Luo, Y. Tian, and Q. Xu, “Deepdyve: Dynamic
verification for deep neural networks,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020,
pp. 101–112.

[60] Q. Liu, W. Wen, and Y. Wang, “Concurrent weight encoding-based de-
tection for bit-flip attack on neural network accelerators,” in Proceedings
of the 39th International Conference on Computer-Aided Design, 2020,
pp. 1–8.

[61] J. Li, A. S. Rakin, Z. He, D. Fan, and C. Chakrabarti, “Radar: Run-
time adversarial weight attack detection and accuracy recovery,” arXiv
preprint arXiv:2101.08254, 2021.

[62] E. Chou, F. Tramer, and G. Pellegrino, “Sentinet: Detecting localized
universal attacks against deep learning systems,” in 2020 IEEE Security
and Privacy Workshops (SPW). IEEE, 2020, pp. 48–54.

[63] J. Gildenblat and contributors, “Pytorch library for cam methods,” https:
//github.com/jacobgil/pytorch-grad-cam, 2021.

[64] J. Li, A. S. Rakin, Y. Xiong, L. Chang, Z. He, D. Fan, and
C. Chakrabarti, “Defending bit-flip attack through dnn weight recon-
struction,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2020, pp. 1–6.

[65] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural
network with progressive bit search,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 1211–1220.

[66] A. S. Rakin, Z. He, J. Li, F. Yao, C. Chakrabarti, and D. Fan,
“T-bfa: Targeted bit-flip adversarial weight attack,” arXiv preprint
arXiv:2007.12336, 2020.

[67] S. Garg, A. Kumar, V. Goel, and Y. Liang, “Can adversarial weight
perturbations inject neural backdoors?” CoRR, vol. abs/2008.01761,
2020. [Online]. Available: https://arxiv.org/abs/2008.01761

[68] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks against
intel sgx,” in Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P’20), 2020.

APPENDIX

A. Probability Analysis

We further analyze Equation 2 with the numbers calculated
in the Table I.

First, we calculate the probability of finding a target page t
for each N values and three different k + l values. Note that
k+l is the number of bit offsets within a page. Figure 9 shows
that, for 1 bit per page, 2200 pages are enough to achieve
99.99% accuracy for the DDR4 DRAM K1 listed on Table I.
For 2 and 3 bits per page, the same number of pages give 2%
and 0.006% probability, respectively.

0 0.5 1 1.5 2 2.5 3 3.5
N - Number of Pages #104

10-8

10-6

10-4

10-2

100

p
-

P
ro

ba
bi

lit
y

k+l=1
k+l=2
k+l=3

Fig. 9: Probability of finding a page among N pages for
different k+l values. k+l states the number of targeted bit
offsets in a page.

Second, given a page offset to flip, we calculate the prob-
ability of finding such a target page for each N values and
different DRAM chips. The results on Figure 10 suggest that
given enough number of pages, N , the probability of finding
a target page is close to 1 for even the least flippy DRAM
devices.

B. Finding Contiguous Memory

Virtual to physical address mappings are stored in pagemap
file in Linux OSs and it requires root privileges to access these

14

https://docs.nvidia.com/deeplearning/tensorrt
https://docs.nvidia.com/deeplearning/tensorrt
https://github.com/akamaster/pytorch_resnet_cifar10
https://pypi.org/project/torchvision/
https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam
https://arxiv.org/abs/2008.01761

0 2 4 6 8 10
N - Number of Pages #104

0

0.2

0.4

0.6

0.8

1
p

-
P

ro
ba

bi
lit

y

B1: 1.05 flips
E2: 2.02 flips
L1: 3.12 flips
I1: 8.28 flips
L2: 13.98 flips
F1: 28.77 flips
K2: 109.48 flips

Fig. 10: Probability of finding a page among N pages for
different DRAM chips.

translations. Using the SPOILER tool [43], we can reliably
leak the information about the last 8 bits in physical addresses
after the page offset bits. This allows us to find contiguous
memory chunks in physical address space.

SPOILER works by taking advantage of a performance
optimization in Intel processors where loads are executed
speculatively before stores, resulting in a timing side channel
if the load has dependencies based on the same partial address
information as a store. SPOILER uses the differences in time
between loads and stores to extrapolate which virtual addresses
within an array are contiguous physically. Our SPOILER
implementation performs the timing measurements 100 times
per page, removing outliers and taking the average read time.

In Figure 11, the page numbers with the peaks in the y-axis
are contiguous pages physical address space.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Page Number #104

0

200

400

600

800

1000

C
lo

ck
 C

yc
le

Fig. 11: Timing peaks on virtual addresses detected by
SPOILER [43] attack. Virtual addresses on the peaks are
contiguous on physical address space.

C. Finding Neighbor Rows in DRAM

After translating the address from virtual to physical address
space, there is another translation which maps the physical
addresses to DRAM banks, rows and columns. To be able to
successfully realize a Rowhammer attack, we need physical
addresses that are mapped to the same bank in the DRAM,

and thus, neighbor rows. We use row buffer conflict side-
channel [44] to detect which two addresses are in the same
bank. Figure 12 shows that about one sixteenth of the address
give larger access time, meaning they are in the same banks
and neighbor rows.

200 250 300 350 400 450 500
Clock Cycle

0

0.5

1

1.5

2

N
um

be
r

C
ou

nt

#104

Fig. 12: Access time distribution of previously found con-
tiguous physical addresses. Accessing physical addresses that
are mapped to the same DRAM bank takes around 400 clock
cycles.

D. Restoring the Modified Parameters

In order to show the importance of putting constraints
on the optimization of target neurons, first, we fine-tune all
parameters in a ResNet18 model using clean and adversarial
examples without putting any constraints. Since the training
approach is aligned with the work in [32], we refer to this
method as BadNet. Then, starting from the weight parameters
with the lowest gradient values, we restore a part of the
parameters to their original values at the end. Table IV shows
the change in the attack performance a part of the weight
parameters are restored into their original values. For instance,
BadNet reaches 99.88% Attack Success Rate and 87.61% Test
Accuracy after the unconstrained fine-tuning. Then, when we
restore only 1% of the weights (i.e. 99% of the weights remain
modified), we observe that Attack Success Rate drops down to
76.11% while the Test Accuracy is slightly increasing. Even
if we keep 50% of the parameters (44 million bits) modified,
limiting the number of modified parameters at the end of fine-
tuning achieves only 34.15% Attack Success Rate, whereas
we reach 92.95% test accuracy and 95.26% attack success rate
with only 99 bit-flips using CFT+BR. Therefore, we claim that
fine-tuning without any constraints distributes the knowledge
of backdoor to all parameters and the parameter limit that
is applied at the end degrades the backdoor success rate
drastically. This result pushes us towards putting constraints
on fine-tuning.

E. Comparison of Found Bit Flips

Figure 13 illustrates the sparsity of found bit flip locations
by our method (CFT+BR) and TBT. Note that the bit flips
found by TBT (red) are localized in only one page. However,
the bit flips located by CFT+BR are sparsely distributed over

15

TABLE IV: BadNet reaches reasonable attack success rate
(ASR) and test accuracy (TA) only when more than 90% or
parameters are changed. Limiting the percentage of modifica-
tions after fine-tuning decreases the attack performance.

Modification(%) TA(%) ASR(%)

100 87.61 99.88
99 89.79 76.11
90 90.92 61.04
80 91.67 51.22
70 92.01 43.79
50 92.41 34.15

the weight file which makes them actually flippable in the
online phase.

Fig. 13: The comparison of vulnerable bit locations found by
CFT+BR (black) and TBT (red) on ResNet50 weight file.

F. Negative Result - Plundervolt Attack

In this experiment, we try to use another software-based
faulting mechanism, namely Plundervolt [68], to inject faults
during the inference phase of a DNN model. Differently from
the Rowhammer attack, the Plundervolt attack utilizes under-
volting the CPU beyond the optimal operation limits using
the MSR interface to cause faulty results in the multiplication
results. Since the computational graphs of DNN models have
many multiplication operations, Plundervolt can be a potential
threat to DNN inference as well. We first run the Plundervolt
PoC code to verify undervolting can fault the multiplication
operations and get the frequency-voltage pair where we can
reliably produce faults. Then, we experimented with DNN
models with floating-point weight parameters and undervolted
the CPU to the determined frequency-voltage pair. We did
not observe any faults in the multiplication results when the
operands are floating points. We also experimented under-
volting while an n-bit quantized DNN model is operating.
However, we did not see any faults in the DNN model. We
claim that the reason why the multiplication results are not
affected by undervolting is the operand values are limited to
2n − 1 which is 255 in 8-bit quantized DNN models. We

observed that when the second operand of multiplication is
smaller than 0xFFFF, undervolting does not introduce any
bit flips in the multiplication result which is consistent with
the observations in the original Plundervolt work [68].

We also experimented with the matrix multiplication
implementations of the PyTorch library. We observe that
torch.matmul function produces faulty results only when
the following three conditions are met. First, the second
operand must be larger than 0xFFFF. Second, the size of
operands must be 1-by-1. Finally, the multiplication operation
must be run in a while loop keeping operands constant.

Hence, we conclude that injecting backdoors to the DNN
models or degrading the accuracy of them using Plundervolt
attack is not practical.

16

	Introduction
	Background
	Rowhammer Attack
	Deep Neural Networks
	Backdoor Attacks on DNN Models

	Threat Model
	Backdoor Injection using Rowhammer
	Offline Attack Phase
	Memory Profiling For Adjacent Rows
	Memory Profiling For Faults
	Constrained Fine-Tuning with Bit Reduction (CFT+BR)

	Online Attack Phase: Flipping Bits in the Deployed Model
	Releasing the Flippy Rows
	Mapping the Model Weights to Flippy Rows
	Flipping Bits in the Weight File

	Weight Quantization

	Evaluation
	Experimental Setup
	Evaluation Metrics
	Rowhammer Attack on Deployed Model - Online
	CIFAR-10 Experiments
	ImageNet Experiments
	Generalization to Other DNN Architectures

	Potential Countermeasures
	Prevention-Based Countermeasures
	Detection-Based Countermeasures
	Recovery-based Countermeasures

	Related Works
	Discussion
	Conclusion
	References
	Appendix
	Probability Analysis
	Finding Contiguous Memory
	Finding Neighbor Rows in DRAM
	Restoring the Modified Parameters
	Comparison of Found Bit Flips
	Negative Result - Plundervolt Attack

