Al-Assisted Detection and Mitigation of
Microarchitectural Vulnerabilities

Muttalip Caner Tol

A Dissertation

Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy
in
Electrical and Computer Engineering

December 2024

APPROVED:

Professor Stjepan Picek, Committee Member, Radboud University

Professor Ziming Zhang, Committee Member, ECE, Worcester Polytechnic Institute

Professor Berk Sunar, Advisor, ECE, Worcester Polytechnic Institute

Professor Donald Brown, Department Head, ECE, Worcester Polytechnic Institute

Abstract

Microarchitectural vulnerabilities pose a significant security challenge, enabling attackers
to exploit hardware optimizations to compromise system integrity and data confidentiality.
These vulnerabilities, often hidden in the complex interactions between modern processors,
memory hierarchies and software stack. It is required to have innovative techniques for their
discovery, and mitigation. Existing approaches struggle to address the scale and complexity
of these threats, necessitating new methodologies that combine the strengths of artificial
intelligence and optimization.

This dissertation presents a comprehensive exploration of microarchitectural vulnerabili-
ties, leveraging novel Al-driven techniques to tackle some of the most pressing challenges in
the field. On the fault attack side, we demonstrate a Rowhammer-based backdoor injection
attack on machine learning models deployed on real hardware. This work introduces a con-
strained optimization framework to efficiently identify and exploit sparse and device-specific
memory vulnerabilities, achieving high attack success rates with minimal fault injections.

Next, we propose a hybrid approach for the detection of Spectre gadgets using Generative
Adversarial Networks for generating diverse gadget datasets and a BERT-based classifier
for high-dimensional analysis. This methodology significantly improves the scalability and
comprehensiveness of gadget detection in large software systems.

Then, we explore the use of Large Language Models for patching source code vulnerabil-
ities caused by microarchitectural side-channel leakages. By designing carefully structured

prompts and leveraging dynamic analysis tools, we show that LLMs can generate efficient

and leakage-resilient patches, offering a scalable and cost-effective alternative to manual code
mitigation.

Finally, we develop a Reinforcement Learning framework for the discovery of microarchi-
tectural vulnerabilities. By simulating x86 instruction execution in a custom RL environ-
ment, we enable automated exploration of instruction sequences, uncovering novel transient

execution mechanisms and previously unknown vulnerabilities.

i

Acknowledgments

The works that contributed to this dissertation was supported by the National Science
Foundation, under grants CNS-1814406, CNS-2026913, CCF-2006738 and in part by Intel
Corporation and Qatar National Research Fund.

I thank my advisor Professor Berk Sunar for his guidance and support throughout my
Ph.D. studies and my committe members Professor Stjepan Picek and Professor Ziming
Zhang for their guidance and feedback. I would also like to thank my co-authors Andrew J.
Adiletta, Kemal Derya, Yarkin Doréz, Thomas Eisenbarth, Berk Gulmezoglu, Saad Islam,
Koksal Mus, Kristi Rahman, and Koray Yurtseven for the work we have done together, and
the anonymous reviewers for their valuable comments. Special thanks to Koksal Mus who
encouraged me to do this Ph.D. and helped me start a life in the US. I am grateful to my

family and friends for their support.

i

Contents

1 Introduction 1
1.0.1 Contributions 3

1.0.2 Publications 4

2 Background 7
2.1 Microarchitectural Vulnerabilities 7
2.1.1 Rowhammer Attacks 7

2.1.2 pArch Side Channel Attacks 8

2.1.2.1 Constant-Time Implementations 10

2.1.3 Transient Execution Attacks 11

2.1.4 Analysis Techniques for gArch Vulnerabilities 14

2.1.4.1 Detecting Side-channels 14

2.1.4.2 Detecting Spectre Gadgets 14

2.2 Machine Learningo Lo 16
2.2.1 Deep Neural Networks 16

2.2.2 Natural Language Processing 17

2.2.2.1 seq2seq Architecture 17

2.2.2.2 Generative Adversarial Networks 18

2.2.2.3 Attention-only Models 19

2.2.3 Reinforcement Learning 20

il

3 Search of Hardware Specific Fault Targets on Security-Sensitive Software 22

3.1
3.2
3.3
3.4

3.5

3.6

3.7
3.8

Motivation 22
Backdoor Attacks on DNN Models 24
Threat Model 25
Backdoor Injection using Rowhammer 27
3.4.1 Offline Attack Phase, 27

3.4.1.1 Memory Profiling For Adjacent Rows 27

3.4.1.2 Memory Profiling For Faults 27

3.4.1.3 Constrained Fine-Tuning with Bit Reduction (CFT+BR) . 30
3.4.2 Online Attack Phase: Flipping Bits in the Deployed Model 34

3.4.2.1 Releasing the Flippy Rows 34

3.4.2.2 Mapping the Model Weights to Flippy Rows 35

3.4.2.3 Flipping Bits in the Weight File 35
3.4.3 Weight Quantization o0 36
Evaluation 37
3.5.1 Experimental Setup Lo 37
3.5.2 Evaluation Metrics oo 38
3.5.3 Rowhammer Attack on Deployed Model - Online 39
3.5.4 CIFAR-10 Experiments 42
3.5.5 ImageNet Experiments 44
3.5.6 Generalization to Other DNN Architectures 46
Potential Countermeasureso 46
3.6.1 Prevention-Based Countermeasures 47
3.6.2 Detection-Based Countermeasures A7
3.6.3 Recovery-based Countermeasures 49
Related Works o 50
Discussion 52

v

3.9 Dynamic Analysis Approach on the Detection of Fault Targets 53

3.9.1 Tool Implementation 56
3.9.2 Experiments Lo 57
3.9.2.1 ML Misclassification 0. 57

3.9.2.2 Crypto Libraries 58

3.10 Conclusion 66
Scalable Generation and Detection of Spectre Gadgets 67
4.1 Motivation 67
4.2 Related Workso 70
4.2.1 Spectre attacks and detectorso 70
4.2.2 Binary Analysis with Embedding 71
4.2.3 GAN-based Text Generation 72

4.3 SpectreGAN: Spectre Gadget Generation 72
4.3.1 Gadget Generation via Fuzzing 72
4.3.2 SpectreGAN: Assembly Code Generation with GANs 75
4.3.2.1 SpectreGAN Architecture 75

4.3.2.2 Trainingo 79

4.3.2.3 Tokenization and Training Parameters 80

4.3.2.4 Evaluation L oo 81

4.3.3 Diversity and Quality Analysis of Generated Gadgets 83
4.3.3.1 Syntactic Analysis 83

4.3.3.2 Microarchitectural Analysis 85

4.3.3.3 Detection Analysis L. 86

4.4 FastSpec: Fast Gadget Detection Using BERT 89
4.4.1 'Training Procedureso Lo 90
4.4.1.1 Pre-trainingo 91

4.4.1.2 Fine-tuning Lo oo 92

4.4.2 Training Details and Evaluation 92

4.4.3 Case Study: OpenSSL Analysis 93
4.4.4 Case Study: Phoronix Test Suite Analysis 94

4.5 Discussion and Limitations 00000 99
4.5.1 Gadget Verification Lo 99
4.5.2 Scalability and Flexibility 100
4.5.3 Comparison of FastSpec with Other Tools 101
4.5.4 Scope and Limitations L. 102

4.6 Conclusion L 104
Automated Side-Channel Patching in Source Code Using LLMs 105
5.1 Motivation oL 105
5.2 Related Works 109
5.3 Threat Model and Scopeo 111
5.3.1 Research Questions 112

5.4 Methodology 112
5.4.1 Ensuring Constant-Time Execution 112
5.4.1.1 Evaluating Side-Channel Leakage 113

5.4.1.2 Patching for Constant-timeness 114

5.4.2 Mitigating Spectre-v1lo 119
5.4.2.1 Finding Spectre-vl Gadgets 119

5.4.2.2 Patching Spectre-vl Gadgets 120

5.5 Evaluation L 121
5.5.1 Patching Spectre-vl Gadgets 122
5.5.2 Patching a Real World Spectre-vl Gadget 126
5.5.3 Patching Javascript Libraries for Constant-Timeness 126
5.5.4 Comparison of LLMs oo 129

5.6 Discussion and Limitations L0000 132

vi

5.7 Conclusion, 134

Exploring pArch Vulnerabilities Using Reinforcement Learning 135
6.1 Motivationo 135
6.2 Related Works 139
6.3 Threat Model and Scope 140
6.4 Our RL Framework 141
6.4.1 Environment 142
6.4.2 RL Agent 143
6.4.3 Action Space 143
6.4.4 State 144
6.4.5 Observationo 144
6.4.6 Reward Function L 146
6.5 Experiments 150
6.6 Discovered Transient Execution Mechanisms 151
6.6.1 Masked Exceptionso 151
6.6.2 Transitions Between MMX and x87 152
6.7 Discussion 153
6.8 Conclusion 154
Conclusion 155

Spectre Gadget Generation 178
A.1 Assembly Gadget Examples oL 178
A.2 Mutational Fuzzing 180
Side-Channel Patching 181
B.1 Example Patching Loop with GPT-4 181
B.2 Microbenchmark of Leaky Functions Compiled from the Literature 183

vil

C RL-based pArch Vulnerability Exploration

C.1 Instruction Sets

viii

List of Tables

3.1
3.2

3.3
3.4

3.5
3.6
3.7

4.1

4.2

5.1
5.2

5.3
5.4

Average number of bit flips per memory page for DDR3 and DDR4 chips. . .
Comparison of our methods CFT, CFT+BR with the baseline methods Bad-
Net, FT,and TBT.
CFT+BR experiment results on VGG architectures
Number of gadget candidates found in decision tree algorithm with different
Hamming distances.o
Number of gadget candidates found by MFS on OpenSSL.
Ciphers implemented in OpenSSL that are vulnerable to LeapFrog attack.

Results from scans on the libogs library, showing various issues encountered
during signature operations for each digital signature scheme, along with the

total number of assembly executions and candidate gadgets.

the number of unique n-grams for base gadgets and generated gadgets by
fuzzing and SpectreGAN methods.

Comparison of 007, Spectector, and FastSpec.

Parameter configurations of different LLMs used in this work.
Mitigation overhead of the Spectre-vl micro benchmark for different mitiga-
tion techniques.o
Patching performance of ZeroLeak in vulnerable Javascript libraries.

Patching performance of different models.

X

30

125

6.1

Al

C.1

List of used CPU performance events available in Intel Core i9-7900X with

descriptions

Instructions and registers inserted randomly in the fuzzing technique.

Number of instructions per set used in the action space

List of Figures

1.1

2.1

3.1

3.2

3.3

3.4

3.5

3.6

Overview of the dissertation. The subcategories of microarchitectural vulner-
abilities and the aspects we address are listed in a tree structure. For each
type of vulnerability, the corresponding publications are shown as leaf nodes.

Excluded publications are indicated with dashed boxes.

An example of a data-dependent equality check logic that violates the constant-

time property. Adapted from [87].

Backdoored Model behavior with clean inputs (top) and trigger added inputs
(bottom). Fault injection to the model changes the behavior of the classifier,
as shown by the confusion matrices.

The bit flip locations in one of the 4KB pages showing the sparsity of the bit

The illustration of targeted model weights across the DNN model weight pages
in the memory. The bulls-eye denotes the targeted bit location in a page. . .
Physical Address of released pages vs ResNet20 weight file. First pages of the
weight file are mapped to the last released pages of our buffer.
Average number of bit flips on an 8MB buffer vs the number of sides in an
n-sided Rowhammer attack. 0000
Average number of bit flips per page for 15-sided (blue) and 7-sided (red)

Rowhammer attack patterns.

x1

10

25

29

33

36

40

3.7

3.8

3.9

3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4

4.5

4.6

5.1
5.2
5.3

Total loss graph at every training iteration during the backdoor injection to
the ResNet18 42
The change in GradCAM [190] heatmaps that belong to ResNet18 before the

attack (left) and after the attack (right). The focus of the model shifts through

the trigger pattern if it is backdoored.o 46
LeapFrog gadget detection using MFS framework 54
aes-266-ctr simulation results o000 60

aria-256-ctr simulation results. Plaintext helloworld is revealed three times. 60
LeapFrog gadget in aria-128-cbc block cipher. 61
LeapFrog gadget detected in 1ibogs binary for Dilithium PQC Digital Signa-
ture Scheme. The PC value that fault is injected into, addry,., is highlighted
in blue. The new value after the fault injected, addrg.s, is highlighted in red.

The fault is injected during the execution of the function call highlighted in

22T 8 65
SpectreGAN architecture. 76
The validation perplexity and Spectre gadget success rate for SpectreGAN. . 82

The distribution of base, fuzzing generated and SpectreGAN generated gadgets. 85
3-D visualization for the distribution of instructions and registers after t-SNE
is applied to embedding vectors. 90
Solid line stands for the ROC curve of FastSpec for Spectre gadget class.
Dashed line represents the reference line. 95

The processing time of FastSpec is independent of the number of branches

whereas for Spectector and 007 the analysis time increases drastically. 98
ZeroLeak patch generator framework overview. 114
Prompt template for constant time patch. 118
Prompt template for patching Spectre-vl gadgets. 121

xil

5.4

5.9
5.6

6.1

6.2
6.3

Spectre v1 patch examples on source code. The top one shows inline 1fence
mitigation. The bottom one shows the patch generated after our framework. 124
Patching OpenSSL Spectre gadget example 127
A failed example from codechat-bison. Original function is on top, and the

generated patch is below. o000 131

Overview of the RL framework for pArch vulnerability analysis.

... 142
Test flow for detecting observable byte leakage. 149
Experiment Setup 150

xiil

Chapter 1

Introduction

In recent years, the increasing complexity and performance demands of modern computing
systems have driven the development of microarchitectural optimizations. These optimiza-
tions—essential to improving computation speed and efficiency—come with unintended se-
curity risks. By exploiting subtle interactions within hardware components, memory access
patterns, and speculative execution processes, attackers have discovered a range of novel vul-
nerabilities. Among these, Rowhammer and transient execution attacks have demonstrated
the potential to compromise data integrity, confidentiality, and even control-flow integrity
in a range of computing environments. This thesis explores how artificial intelligence (AI)
can assist in identifying, analyzing, and mitigating these microarchitectural vulnerabilities,
providing automated, scalable tools for security in modern systems. Our work further exam-
ines how these hardware-level vulnerabilities impact machine learning (ML) models, which
are increasingly embedded in security-sensitive applications, presenting new challenges in
robustness and resilience.

One of the prominent examples of fault attacks, Rowhammer, leverages repetitive ac-
cess to specific DRAM rows to induce charge leakage in adjacent rows, resulting in bit
flips [101]. Since its discovery, Rowhammer has been shown to exploit hardware weaknesses

across diverse computing domains, from local devices to cloud and edge environments. Ef-

forts to mitigate Rowhammer have yielded a range of defenses, from software-based detec-
tion methods [39,90] to hardware-level countermeasures. However, these solutions often
fail to address Rowhammer’s growing sophistication fully. The discovery of Rowhammer
gadgets [204], which leverage predictable memory accesses to execute unintended behavior,
highlights Rowhammer’s potential to compromise even more secure systems. Similarly, re-
cent work by Adiletta et al. [9] demonstrated that Rowhammer can target internal CPU
states, creating new risks to stack variables and sensitive data.

The growing adoption of machine learning models in security-critical applications intro-
duces additional complexity to the microarchitectural vulnerability landscape. Deep neural
networks (DNNs), widely used for tasks like image classification, anomaly detection, and
natural language processing, are vulnerable to adversarial and fault injection attacks that
can compromise both model accuracy and integrity [66,199]. Fault injection attacks, such as
Rowhammer, can target ML models by flipping bits in their weights, resulting in significant
accuracy degradation or even targeted misclassifications [81,240].

Transient execution attacks, including Spectre and Meltdown, represent another signif-
icant class of microarchitectural vulnerabilities. These attacks exploit speculative and out-
of-order execution, core mechanisms in modern CPUs designed to maximize performance.
Spectre, one of the earliest and most widely publicized of these attacks, manipulates spec-
ulative execution paths to expose sensitive data [105]. By tricking the CPU into perform-
ing speculative operations on malicious data, attackers can infer confidential information
through side-channel analysis. Meltdown, a closely related attack, leverages out-of-order
execution to access unauthorized memory locations, creating further security risks in multi-
user and multi-tenant environments [119]. As these vulnerabilities became widely known,
they prompted extensive research into speculative execution defenses, but the effectiveness
of current mitigations remains limited.

Addressing the Spectre and Meltdown vulnerabilities has proven challenging. Hard-

ware patches are often infeasible due to the prohibitive costs associated with redesigning

CPUs, while software mitigations frequently degrade performance, limiting their appeal.
Additionally, current automated detection tools, including taint analysis and symbolic ex-
ecution [72,224], struggle to scale effectively for large binaries and complex dependencies.
Our work introduces an Al-driven tool that addresses these limitations by leveraging gen-
erative models, including GANs and Transformers, to automatically detect and mitigate
speculative execution vulnerabilities at scale. This approach provides a more robust, flexible
means of identifying and patching Spectre vulnerabilities, allowing developers to address
microarchitectural risks without compromising performance.

This thesis investigates the application of AI techniques to improve the resilience of

modern systems against microarchitectural vulnerabilities.

1.0.1 Contributions

In summary, this thesis makes the following contributions:

e We develop a novel constrained optimization algorithm that identifies memory bit loca-
tions vulnerable to Rowhammer and maps model weights to create backdoors effectively.
Our optimization jointly minimizes the number of model modifications required for back-
dooring by simultaneously optimizing trigger patterns, vulnerable bit locations, and model
parameter values. We validate the practicality of our approach by targeting a deployed
ResNet-20 model trained on CIFAR-10 in PyTorch. With Rowhammer performed on live
DRAM, the model retains over 91% test accuracy and achieves a 94% backdoor attack
success rate by flipping only 10 out of 2.2 million bits. Through experiments, we show that
state-of-the-art countermeasures against bit-flip attacks are either ineffective (e.g., weight
reconstruction, piecewise weight clustering), introduce significant overhead (e.g., weight
encoding), or degrade accuracy considerably (e.g., binarization-aware training) against our
attack.

e We develop MFS, the first simulation tool designed to identify LeapFrog gadgets. Built

on Intel Pin, it systematically analyzes binaries and incorporates time-domain analysis,

improving upon existing methodologies. Using MFS, we scan the Open Quantum Safe
library, OpenSSL encryption, and a machine learning model to quantify potential LeapFrog
gadgets in their codebases.

We present the first comprehensive study of LLMs to automatically patch microarchitec-
tural side-channel vulnerabilities. To the best of our knowledge, this is the first work to
propose an automated method to fix side channels in the source code, which eases the
shortage of developers with security expertise in the CI/CD pipeline.

We propose prompting techniques and a toolchain leveraging LLMs to detect vulner-
abilities, generate security patches, and evaluate performance and cost, demonstrating
effectiveness across programming languages and real-world libraries.

We propose a novel approach for discovering microarchitectural vulnerabilities using rein-
forcement learning (RL).

We design a custom RL environment simulating the execution of x86 instructions on a
microarchitecture, enabling the RL agent to explore the instruction space effectively.

We show that the RL agents are able to discover unknown transient execution mecha-
nisms, such as masked floating-point exceptions and MME /x87 transitions, showcasing its

capability in identifying novel vulnerabilities.

1.0.2 Publications

The work presented in this dissertation was a collaborative effort with several co-authors.
The overview of the chapters and their corresponding publications are shown in Figure 1.1.

The following publications are associated with this dissertation:

1. M. Caner Tol, Saad Islam, Andrew J. Adiletta, Berk Sunar, and Ziming Zhang.
"Don’t Knock! Rowhammer at the Backdoor of DNN Models.” In 2023 53rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)
IEEE, 2023.

2. M. Caner Tol, Berk Gulmezoglu, Koray Yurtseven, and Berk Sunar. ”Fastspec:
Scalable generation and detection of spectre gadgets using neural embeddings.” In

2021 IEEE European Symposium on Security and Privacy (EuroS&P) IEEE, 2021.

3. M. Caner Tol, and Berk Sunar. ”ZeroLeak: Automated Side-Channel Patching
in Source Code Using LLMs.” In European Symposium on Research in Computer

Security, pp. 290-310. Cham: Springer Nature Switzerland, 2024.

4. M. Caner Tol, Kemal Derya, and Berk Sunar. ”uRL: Discovering Transient Execu-

tion Vulnerabilities Using Reinforcement Learning” Preprint (2024).

5. Andrew J. Adiletta, M. Caner Tol, and Berk Sunar. ”LeapFrog: The Rowhammer

Instruction Skip Attack.” hardwear.io (2024).
The following publications are excluded from this dissertation:

1. Koksal Mus, Yarkin Doréz, M. Caner Tol, Kristi Rahman and Berk Sunar, ”Jolt:
Recovering TLS Signing Keys via Rowhammer Faults,” 2023 IEEE Symposium on
Security and Privacy (SP), San Francisco, CA, USA, 2023

2. Kemal Derya, M. Caner Tol, and Berk Sunar. "FAULT4+PROBE: A Generic Rowhammer-

based Bit Recovery Attack.” Preprint (2024).

3. Berk Gulmezoglu, Andreas Zankl, M. Caner Tol, Saad Islam, Thomas Eisenbarth,
and Berk Sunar. 2019. Undermining User Privacy on Mobile Devices Using Al. In

Proceedings of the 2019 ACM Asia Conference on Computer and Communications

Security (Asia CCS '19). Association for Computing Machinery, New York, NY, USA

4. Andrew Adiletta, M. Caner Tol, Yarkin Doroz, and Berk Sunar. 2024. Mayhem:
Targeted Corruption of Register and Stack Variables. In Proceedings of the 19th
ACM Asia Conference on Computer and Communications Security (ASIA CCS '24).
Association for Computing Machinery, New York, NY, USA, 467482

[§2.1.2.1. Patching]—>[§5. ZeroLeak [208]

———————————————————————

§2 1. 2 Side Channels

/ [§2 1.4. Scanmng]—»‘ §4. FastSpec [206] ’

uArch §2.1.3. Transient Executlon [§4'3'2' SppesmeCuly PY ’
Vulnerablhtles
(s2.14 Fuzzmg]—{% 4RL [205]]
[§2.1.4. Locahzatmn]—{ §5. Don’t Knock [207]}
§2 1.1. Fault Injectlon
R 7 //// ///) \\
| 71\{[?377}71?{117 ,[?]_1 | Jolt [148] H Fault+Probe [50] \} [§3'9' Leapkrog [8]]

Figure 1.1: Overview of the dissertation. The subcategories of microarchitectural
vulnerabilities and the aspects we address are listed in a tree structure. For each type of
vulnerability, the corresponding publications are shown as leaf nodes. Excluded
publications are indicated with dashed boxes.

Chapter 2

Background

2.1 Microarchitectural Vulnerabilities

2.1.1 Rowhammer Attacks

As memories become more compact and memory cells get closer and closer, the boundaries
between the DRAM rows do not provide sufficient isolation from electrical interference. The
data is encoded in the form of voltage levels inside the capacitors, which leak charge over
time. Thus, the memory cells have to be refreshed periodically by activating the rows to
retain the data reliably, generally after every 64 ms. Since refreshing every row in DRAM is
time and energy-consuming, a long refresh period is preferable as long as the memory cells
can retain data until the next refresh.

Kim et al. [101] identified that when the voltage of a row of memory cells is switched back
and forth, nearby memory cells cannot retain the stored data until the next refresh, causing
bit flips. Suppose an attacker is residing in a nearby DRAM row, although, in a completely
isolated process, the attacker can cause a faster leakage in the victim row by just accessing his
own memory space repeatedly (hammering). Since the Rowhammer vulnerability has been
discovered, it was rigorously analyzed [100, 162] and many exploits, such as unauthorized

access to a co-hosted VM [179], Android root exploit [218], and recovery of secret crypto

keys [55,92,148,149], was shown. Recently, [49,59,94] have shown that more than 80% of the
DRAM chips in the market are vulnerable to the Rowhammer attack including DDR4 chips
having Target Row Refresh (TRR) mitigation. [78] proposed a methodology that results in bit
flips in 99.9% of all DRAM rows on DDR4 chips with TRR protection. The Error Correcting
Codes (ECC) mitigation has also been bypassed in [43]. Rowhammer is a significant threat
to shared cloud environments [42,239] as it can be launched across virtual machine (VM)
boundaries and even remotely through JavaScript. Two research teams concurrently [120,
202] showed even a remote machine can induce Rowhammer bit flips by sending network
packets. More recently, [170] have shown a combined effect of more than two aggressor rows
to induce bit flips in recent generations of DRAM chips. All existing Rowhammer defenses
including TRR, ECC, detection using Hardware Performance Counters, and changing the
refresh rate can not fully prevent the Rowhammer attack [59,68]. The only requirement
of the Rowhammer attack is that the attacker and the victim share the same DRAM chip,
vulnerable to the Rowhammer attack.

Terminal Brain Damage [81] attack showed that DNN model weights are vulnerable to
Rowhammer since bit-flip corruptions can alter the value of floating-point numbers signifi-
cantly, causing accuracy degradation and even targeted misclassification. Deephammer [240]

showed that Rowhammer can deplete the accuracy of quantized DNN models as well.

2.1.2 pArch Side Channel Attacks

The state of the shared pArch resources, such as cache, DRAM, internal buffers and TLB,
can be observed by a colocated attacker to infer the secret data of the victim. In this work, we
focus on cache side-channels. Over the past years, different techniques have been developed
to extract sensible data by using cache timing as a side-channel attack.

FLUSH+RELOAD [241] leverages the last-level cache (LLC) to monitor memory access
patterns in shared pages. While it does not require the attacker and victim to share the

same execution core, it flushes a potential victim address from the cache, and then measures

the reload time if the target address is accessed. EVICT+RELOAD [70] is another work
where an eviction technique is used when cache flushing is not available.

Flush+Flush [69] attack introduces a novel method for exploiting cache timing vulnera-
bilities that relies solely on the execution time of the c1flush instruction in x86 CPUs rather
than the memory accesses, setting it apart from traditional cache attacks. Evict+Time [163]
attack exploits the timing difference between cache hits and misses to infer cache state. By
measuring execution time, an attacker can deduce if a cache miss occurred, revealing infor-
mation about data access patterns. Evict+Spec+Time [38], a refined version of Evict+Time,
allows attackers to determine not only the presence of a cache miss but also the exact lo-
cation within the victim’s code where it occurred. The new method proves highly effective,
significantly outperforming Evict+Time in efficiency.

Cache contention attacks fill a cache set and measure re-access time. Other processes
using the set evict the attacker’s cache lines, causing higher latency, which reveals their cache
activity. Prime+4Probe [122] uses eviction sets to evict victim data from the cache instead
of using the c1lflush instruction without requiring page deduplication between attacker and
victim, making it more versatile across different environments.

The work [89] presents cross-core cache attack that leverages access time variations in
the LLC to retrieve sensitive information across virtual machine (VM) boundaries. The at-
tack exploits huge pages to function without memory deduplication, requiring only machine
co-location of the attacker and victim on separate cores. PRIME4+ABORT [53] attack in-
troduces a novel approach to LLC attacks by eliminating the need for timing side channels,
which traditional LLC attacks rely on. Instead, PRIME+ABORT uses Intel’s Transactional
Synchronization Extensions (T'SX), allowing it to bypass many existing defenses that target
timer-dependent attacks. Prime+Scope [169] is a high-precision cross-core cache contention
attack that enhances cache timing resolution by performing rapid, single-line cache con-

tention measurements.

2.1.2.1 Constant-Time Implementations

Since the many of the pArch design choices, such as hierarchical cache structures, it is not
viable to eliminate the side-channel vulnerabilities entirely. CPU vendors, instead, publish
software development guidelines to mitigate the timing side-channels in the software using
constant-time programming techniques [87].

Constant-time implementations refer to cryptographic algorithms and methods that take
a constant amount of time to execute, regardless of the input size or values. This type of
implementation is essential for securing systems against timing attacks. A practical example
of this could be seen in the RSA decryption algorithm, where different execution paths can
be chosen based on the secret key bit. An attacker can utilize this timing discrepancy to infer
the secret key [106]. The implementation process of constant-time cryptographic algorithms
typically requires meticulous programming to ensure that no branches (such as if-then-else
constructs), loops, or other operations are contingent on the secret data. For instance,
cryptographic algorithms like AES should avoid data-dependent branches and employ bit-

wise operations, which are known to execute in constant time on most platforms.

1 equals(byte al[], size_t a_len,
2 byte b[], size_t b_len) {

3 (size_t i = 0; i < a_len; i++)

4 (ali] '= b[i]) // data dependent!

Figure 2.1: An example of a data-dependent equality check logic that violates the
constant-time property. Adapted from [87].

Challenges exist in guaranteeing a truly constant-time implementation, particularly on
contemporary CPUs that possess features like out-of-order execution and speculative execu-
tion. This necessitates an in-depth understanding of both the cryptographic algorithm and
the hardware it functions on.

There are several examples of constant-time cryptographic algorithms, such as the constant-

10

time carry-less multiplication utilized in AES-GCM implementations and the constant-time
modular inversion employed in elliptic curve cryptography.

A plethora of tools exist for automated verification of the constant-time criterion. How-
ever, there is a significant discrepancy between academic research and cryptographic en-
gineering practice. Despite the availability of tools for checking constant-time execution,
developers often overlook this due to resource constraints [93].

Considering the escalating sophistication of side-channel attacks, the increasing hetero-
geneity, and the constant evolution of computing platforms, security-critical software needs
to be continuously reevaluated for constant-time execution. Future research and develop-
mental efforts will perpetually focus on generating more secure and efficient constant-time

algorithms.

2.1.3 Transient Execution Attacks

In order to keep the pipeline occupied at all times, modern CPUs have sophisticated pArch
optimizations to predict the control flow and data dependencies, where some instructions
can be executed ahead of time. However, the predictions are not 100% accurate, causing
them to execute some instructions mistakenly. These instructions cause pipeline flush once
they are detected, and their results are never committed. Interestingly, uArch optimizations
make it possible to leak secrets. The critical period before the flush is commonly referred to
as the transient domain.

Transient execution attacks exploit speculative and out-of-order execution in CPUs to
access secret data in the transient domain, leaving traces in the cache that attackers can
analyze. Transient execution occurs when the CPU mispredicts the control flow or data
dependencies [158], or when the executed instructions require pcode assist or cause excep-
tions [28,174]. There are two classes of attacks in the transient domain: Spectre-type attacks
that exploit the speculative execution and Meltdown-type attacks which exploit delayed per-

mission checks and lazy pipeline flush in the re-order buffer [28].

11

Spectre Since a typical software consists of branches and instruction/data dependencies,
modern CPUs have components for predicting conditional branches’ outcomes to execute
the instructions speculatively. These components are called branch prediction units (BPU),
which use a history table and other components to make predictions on branch outcomes.
Spectre v1 [105], also known as Bounds Check Bypass or Spectre-BHT, affects a wide
range of modern processors, including those from Intel, AMD, and ARM. It allows an attacker
to trick a program into speculatively executing code that should not have been executed,
potentially leaking sensitive data. In Spectre attacks, a attacker fills the branch history
table with malicious entries such that the BPU makes a misprediction. Then, the CPU
executes a set of instructions speculatively. As a result of misprediction, sensitive data can
be leaked through pArch components, for instance, by encoding the secret to the cache lines

to establish a covert channel.

1 victim_function(size_t x){
2 (x < size)

3 temp &= array2[arrayl[x] * 512];

Listing 2.1: Spectre-V1 C Code

For example, in the Spectre gadget in Listing 2.1, the 27¢ line checks whether the user
input x is in the bound of arrayl. In a normal execution environment, if the condition is
satisfied, the program retrieves 2" element of array1, and a multiple of the retrieved value
(512) is used as an index to access the data in array2. However, under some conditions,
the size variable might not be present in the cache. In such occurrences, instead of waiting
for size to be available, the CPU executes the next instructions speculatively. To eliminate
unnecessary stalls in the pipeline. When size becomes available, the CPU checks whether
it made a correct prediction or not. If the prediction was wrong, the CPU rolls back and
executes the correct path. Although the results of speculatively executed instructions are

not observable in architectural components, the access to the array?2 leaves a footprint in

12

the cache, making it possible to leak the data through side-channel analysis.

Spectre v1 is challenging to mitigate because it is a hardware-level issue, and traditional
software-based security measures are not sufficient to fully protect against it. Since Spec-
tre vl is a complex vulnerability with widespread implications across different processor
architectures and generations, it has been an ongoing challenge for the industry to address
comprehensively.

NetSpectre [189] is the first remote variant of the Spectre attack, extending its reach be-
yond local code execution. NetSpectre marks a significant shift from local to remote attacks,
making Spectre a threat even to systems where no attacker-controlled code is executed,
including cloud environments.

SgxPectre attack [36] is a method of exploiting CPU vulnerabilities to compromise the
confidentiality and integrity of SGX enclaves. By manipulating branch prediction from
outside the enclave, attackers can temporarily alter the enclave’s control flow, producing

cache-state changes that reveal sensitive information within the enclave.

Meltdown Meltdown [119] is an attack that bypasses memory isolation by exploiting out-
of-order execution in modern processors to access protected kernel memory. This enables
attackers to read memory from other processes or virtual machines without permission.
Foreshadow [215] leaks SGX enclave secrets without needing kernel access or assumptions
about enclave code. Rogue In-flight Data Load (RIDL) [219] leaks in-flight data directly
from CPU line fill buffers without relying on cache or translation structures. Fallout [27]
showed faulting loads caused by a non-present page fault can leak leftover values from the
store buffer. ZombieLoad [187] uses pcode assists to transiently access data in the fill buffer.
Load Value Injection (LVI) [217] injects attacker-controlled values into a victim’s transient
execution. Downfall [141] exploits the gather instruction on AVX instruction set to leak
data from the vector registers of the victim processes.

Some researchers proposed new designs requiring a change in the silicon level [99, 108]

13

while others proposed software solutions to mitigate transient execution attacks [165,213].
Although these mitigations are effective against Spectre-type attacks, most of them are not
used because of the drastic performance degradation [29] or the lack of support in the current
hardware. Hence, Spectre-type attacks are not entirely resolved yet, and finding an efficient

countermeasure is still an open problem.

2.1.4 Analysis Techniques for puArch Vulnerabilities
2.1.4.1 Detecting Side-channels

Microwalk-CI [232] is a dynamic side-channel analysis framework for easy integration into a
JavaScript development workflow. Microwalk-CI adapts the existing Microwalk [231] frame-
work, which was originally designed for finding leakages in binary software. For this, Mi-
crowalk generates a number of execution traces for a set of random inputs and then compares
them using mutual information (MI), a robust measure that allows quantitatively assess the
extent of information leakage. MI can capture a wide range of potential leakages, including
those from the execution path and memory accesses. However, it is worth noting that M-
crowalk requires the tester to generate an input template file for each function tested and

requires interpretation of the report file as it generates entropy estimates.

2.1.4.2 Detecting Spectre Gadgets

There are two main program analysis techniques that are commonly used to detect Spectre
gadgets.

Taint Analysis: Taint analysis tracks outside user-controlled variables that possibly
leak any secret data. If the tainted variables are consumed by a new variable in the program
flow, the latter is also tainted in the information flow. This technique is commonly used in
vulnerability detection [151], malware analysis , [19,243] and web applications [18,153] where
user input misuses are highly likely. Similarly, in Spectre gadgets, the secret dependent op-

erations after conditional branches are potential secret leakage sources. In particular, when

14

the branch decision depends on the user input, the secret is subject to be revealed in the
speculative execution state. In order to detect the Spectre-V1 based leakage in benign pro-
grams, the taint analysis technique is used in 007 [225]. 007 employs control flow extraction,
taint analysis, and address analysis to detect tainted conditional branches and their ability to
impact memory accesses. 007 proposes selectively inserting a small number of fences instead
of inserting fences after every conditional branch to minimize the overhead experienced by
patching against Spectre. For instance, 007 reports less than 2% performance overhead in
experiments on GNU Core utilities.

Symbolic Execution: Symbolic execution is a technique to analyze the program with
symbolic inputs. Each path of the conditional branch is executed symbolically to determine
the values, resulting in unexpected bugs. The symbolic execution is applied to detect poten-
tial information leakage in benign applications. For instance, Spectector [72] aims to identify
the memory and control leaks by supplying symbolic inputs to target functions. They in-
troduce the notion of speculative non-interference (SNI), and develop an algorithm based
on symbolic execution to automatically prove SNI or detect violations indicating Spectre
vulnerabilities which then can be patched. SNI requires that speculatively executed instruc-
tions do not leak more information into the microarchitectural state than what the intended
behavior does, i.e., what is leaked by the standard, non-speculative semantics.

KLEESpectre [223] aims to model cache usage with symbolic execution to detect spec-
ulative interference, which is based on KLEE symbolic execution engine. KLEESpectre is
evaluated on Kocher’s Spectre v1 variants [104] and on cryptographic libraries 1ibTomCrypt,
Linux-tegra, openssl and hpn-ssh.

Pitchfork [30] is a symbolic analysis tool that verifies that code is constant-time with
respect to secret values such as encryption keys or message plaintexts. Pitchfork uses under-
constrained symbolic execution augmented with dynamic taint tracking to verify constant-
time execution. In particular, it uses a shadow memory to track secrets even as they are

stored and loaded from memory. Pitchfork also allows the specification of function hooks.

15

This allows Pitchfork to verify a code at the protocol level while ignoring the implementation
of crypto primitives. Pitchfork was used to verify that a large portion of Mozilla’s NSS cryp-
tographic library is constant-time while also finding several constant-time vulnerabilities.
While the symbolic execution provides a good understanding of underlying bugs for
different input values, it is challenging to apply for large-scale projects due to high resource

demand.

2.2 Machine Learning

2.2.1 Deep Neural Networks

Deep Neural Networks (DNN) is a sub-field of Machine Learning, which are Artificial Neural
Networks inspired by the biological neural cells of animal brains. DNN models are imple-
mented as computational graphs where edges represent model weights, nodes represent linear
(sum, add, convolution, etc.), and non-linear operations (sigmoid, softmax, relu, etc.). DNN
models are formed by multiple layers of weight parameters where each layer learns a different
level of abstraction of the features hierarchically [247].

DNN models can be broadly classified into two categories: generative and discriminative
models. Generative models focus on learning the joint probability distribution between the
input data and their labels, whereas discriminative models aim to learn the conditional
probability distribution of the labels given the input data.

Discriminative models that are mostly trained in a supervised manner, i.e., with labeled
data. Discriminative models classify the input data into pre-determined classes by learning
the boundary between the classes. More formally, a DNN model f is parameterized by €

maps the input samples {x;} into their corresponding classes {y;}.

Training The model parameters § are optimized using the data pairs {x;, y;} according to

the following objective,

16

meinF(H) = Z |:€<f(xi79)7yi>:|7

2

where F is the objective function, ¢ is a loss function, A6 is the change in the model weights.
The model is updated by backpropagating the errors through the layers [183]. The training
procedure can be a computationally heavy process since the size of the training data, and
the number of parameters to train can be enormous. Therefore, training is usually done on

accelerator hardware, such as GPU and ASIC.

Inference After the model weights reach an acceptable performance on the training data
set, they can be deployed as a part of the service. In the inference stage, the model weights
are usually kept unchanged, and the model’s output is used as the classifier output. Since
the inference phase does not need any error backpropagation, it takes much less time than

the training phase, and CPU can be preferred depending on the time/cost/power trade-off.

2.2.2 Natural Language Processing
2.2.2.1 seq2seq Architecture

Sequence to sequence mapping is a challenging process since the text data set has no numeric
values. First, the text data is converted to numeric values with embedding methods [138,140].
Then, a DNN model is trained with vector representations of the text.

A new approach called seq2seq [196] was introduced to model sequence-to-sequence rela-
tions. The seq2seq architecture consists of encoder and decoder units. Both units leverage
multi-layer Long Short Term Memory (LSTM) structures where the encoder produces a
fixed dimension encoder vector. The encoder vector represents the information learned from
the input sequence. Then, the decoder unit is fed with the encoder vector to predict the
input sequence’s mapping sequence. After the end of the sequence token is produced by the

decoder, the prediction phase stops. The seq2seq structure is commonly used in chatbot

17

engine [171] since sequences with different lengths can be mapped to each other.

2.2.2.2 Generative Adversarial Networks

A specialized method of training generative models was proposed by Goodfellow et al. , [65]
called generative adversarial networks (GANs). The generative models are trained with
a separate discriminator model under an adversarial setting. In [65], the training of the

generative model is defined as,

mC}'n mDa’X V(‘D7 G) = Eprdata(x) [log D(xﬂ (21>

+ Eonp. (9 [log (1 — D(G(2)))].

In Equation 2.1, the generator G and the discriminator D are trained in such a way
that D, as a regular binary classifier, tries to maximize its confidence D(z) on real data x,
while minimizing D(G(z)) on generated samples by the G. At the same time, G tries to
maximize the confidence of discriminator D(G(z)) on generated samples G(z) and minimize
D(x) where z is the real data.

MaskGAN [56] is a type of conditional GAN technique to establish a good performance
out of traditional GANs. MaskGAN is based on seq2seq architecture with an attention
mechanism which improves the performance of the fixed-length encoder vectors. Each time
a prediction is made by the decoder unit, a part of the input sequence is used instead of the
encoder vector. Hence, each token in the input sequence has a different weight on the decoder
output. The main difference of MaskGAN from other GAN-based text generation techniques
is the token masking approach, which helps to learn the missing texts in a sequence. For
this purpose, some tokens are masked that is conditioned on the surrounding context. This

technique increases the chance of generating longer and more meaningful sequences out of

GANSs.

18

2.2.2.3 Attention-only Models

Although recurrent models with attention mechanisms learn the representations of long
sequences, attention-only models, namely Transformer architectures [220], are shown to
be highly effective in terms of computational complexity and performance on long-range
dependencies. Similar to seqZ2seq architecture, the Transformer architecture consists of an
encoder-decoder model. The main difference of Transformer is that recurrent models are not
used in encoder or decoder units. Instead, the encoder unit is composed of L hidden layers
where each layer has a multi-head self-attention mechanism with A attention heads and a
fully connected feed-forward network. The input embedding vectors are fed into the multi-
head attention, and the output of the encoder stack is formed by a feed-forward network,
which takes the output of the attention sub-layer. The decoder unit also has L hidden layers,
and it has the same sub-layers as the encoder. In addition to one multi-head attention unit
and one feed-forward network, the decoder unit has an extra multi-head attention layer
that processes the encoder stack output. To process the information in the sequence order,
positional embeddings are used with token embeddings where both embedding vectors have
a size of H.

Keeping the same Transformer architecture, Devlin et al. [51] introduced a new language
representation model called BERT (Bidirectional Encoder Representations from Transform-
ers), which surpasses the state-of-the-art scores on language representation learning. BERT
is designed to pre-train the token representation vectors of deep bidirectional Transformers.
For a detailed description of the architecture, we refer the readers to [51,220]. The heavy
part of the training is handled by processing unlabeled data in an unsupervised manner. The
unsupervised phase is called pre-training, which consists of masked language model training
and next sentence prediction procedures. The supervised phase is referred to as fine-tuning,
where the model representations are further trained with labeled data for a text classifica-
tion task. Both phases are further explained in detail for Spectre gadget detection model

in Section 4.4.

19

2.2.3 Reinforcement Learning

In RL, the objective is for an agent to learn a policy my(a|s), parameterized by 6, which
maximizes the expected cumulative reward through its chosen actions in an environment.
The policy gradient method [198] computes the gradient of the expected reward with respect
to the policy parameters, allowing the agent to directly update the policy by following the

gradient. Formally, the objective function J(6) can be defined as:

J(Q) = Eﬂe

t=0

Zrt] : (2.2)

where r, is the reward at time step ¢, and the expectation is over the trajectories induced
by the policy my. The policy is updated by adjusting 6 in the direction of the gradient Vy.J(6)
using gradient ascent.

One of the major challenges with vanilla policy gradient methods is the high variance
of the gradient estimates, which can lead to unstable learning. Additionally, large updates
to the policy parameters 6 can cause dramatic changes to the policy, potentially leading to
performance collapse.

Trust Region Policy Optimization (TRPO) [185] was proposed to address this issue by
enforcing a constraint on the size of policy updates using a trust region. TRPO introduces

the following constrained optimization problem:

me(als)

E
g Lr (als)

A(s, a)} subject to Eg [Dky, (7, ||m0)] < 0, (2.3)

where Dyy, is the Kullback-Leibler (KL) divergence, A(s,a) is the advantage estimate,
and ¢ is a small positive value controlling the step size. However, TRPO is computation-
ally expensive due to the need for second-order optimization to enforce the KL-divergence
constraint.

Proximal Policy Optimization (PPO) [186] simplifies TRPO by replacing the hard con-

straint on policy updates with a penalty or by using a clipped objective function. The key

20

idea behind PPO is to ensure that policy updates are “proximal” to the current policy,
preventing drastic updates that could lead to instability.
In this work, we use PPO with clipped objective. In this approach, PPO clips the prob-

o(als)

ability ratio o (alyy O lie within a small interval around 1, preventing large updates. The
old

clipped objective is defined as:

LEYP(0) = E| min (r(0)A(s, a), clip(r(0),1 — e, 1 + €)A(s, a)) |, (2.4)
where r(0) = m’;e (a(lj|)s) is the probability ratio, and € is a small hyperparameter that limits
old

how far the policy is allowed to change. By clipping the probability ratio, PPO discourages

overly large updates while still allowing for sufficient exploration of the policy space.

21

Chapter 3

Search of Hardware Specific Fault

Targets on Security-Sensitive Software

3.1 Motivation

DNN models are known for their powerful feature extraction, representation, and classifica-
tion capabilities. However, the large number of parameters and the need for a large training
data set make it hard to interpret the behavior of these models. The fact that an increasing
number of security-critical systems rely on DNN models in real-world deployments raises
numerous robustness and security questions. Indeed, DNN models have been shown to be
vulnerable against imperceivable perturbations to input samples which can be misclassified
by manipulating the network weights [66, 152,199].

Emboldened by recent physical fault injection attacks such as Rowhammer, an alternative
approach was proposed that directly targets the model when it is loaded into memory. There

are two advantages of this attack:

1. Alternative approaches assume modifications are introduced to the model, either during
distribution as part of a repository or after installation. Such malicious tampering may

be challenging to implement in practice and can easily be detected.

22

2. In contrast, a Rowhammer-based attack can remain stealthy since the model is only
modified in real-time while running in memory, and no input modification is required.
Once the program is unloaded from memory, no trace of the attack remains except

misclassified outputs.

Recently, [81,240] showed that flipping a few bits in DNN model weights in memory
while succeeding in achieving misclassification has the side-effect of significantly reducing
the accuracy. Other works [16,125] addressed this problem by tweaking only a minimum
number of model weights that makes a DNN model misclassify a chosen input to a target
label. This approach indeed achieves the objective with only a slight drop in classification
accuracy.

Nevertheless, whether a practical attack such as injecting a backdoor to DNNs can indeed
be achieved in a realistic and stealthy manner using Rowhammer in hardware is still an open
question. Earlier approaches assume that Rowhammer can flip bits with perfect precision in
the memory. This is far from what we observe in reality: only a small fraction of the memory
cells are vulnerable; see Section 3.4.1.2 for further details. Therefore existing proposals fall
short of presenting a practical DNN backdoor injection attack using Rowhammer. This
motivates us to reconsider the backdoor injection process under new constraints, including
the training algorithms.

Our contributions: In this work, we present a backdoor injection attack on a deployed
DNN model using Rowhammer. This result shows that, indeed, real-life deployments are
under threat from backdoor injection attacks. More work needs to be done to secure deployed
models from fault injection attacks used for everyday tasks by end-users. More specifically,
e for the first time, we present an end-to-end backdoor injection attack realized on actual

hardware on a classifier model using Rowhammer as the fault injection method
e we thoroughly characterize DRAMs for bit-flips using extensive Rowhammmer experi-
ments. Our results show that previously proposed backdoor injection techniques make

overly optimistic assumptions about Rowhammer,

23

introduce a more realistic Rowhammer fault model, along with new stringent constraints
on model modifications necessary to achieve a real-life attack,

propose a novel constrained optimization-based algorithm that can map model weights to
identify vulnerable bit locations in the memory to create a backdoor,

we further reduce the number of modifications for the backdoor by jointly optimizing for
trigger patterns, vulnerable locations, and model parameter values.

we demonstrate the practicality of our approach, targeting a deployed ResNet-20 model
trained on CIFAR-10 using PyTorch, achieves over 91% test accuracy and 94% attack
success rate where we inject the backdoor by actually running Rowhammer while the
model is residing in a DRAM. This high level of accuracy is reached by flipping only 10
out of 2.2 million bits.

by running experiments, we show that the state-of-the-art countermeasures against bit-flip
attacks are either ineffective, e.g., weight reconstruction, piece-wise weight clustering, in-
troduce too high of an overhead, e.g., weight encoding, or significantly reduce the accuracy,

e.g., binarization-aware training, to defend against our attack.

3.2 Backdoor Attacks on DNN Models

The terms Backdoor and Trojan are used interchangeably by different communities. Here

we use Backdoor for consistency. In DNN models, we define a Backdoor as a hidden feature

that causes a change in the behavior triggered only by a particular type of input. In the

literature, backdooring is applied with either benevolent intents, such as watermarking the

DNN models [7,191], or with malicious purposes [14,16,37,41,71,126], as a Trojan to attack

the models.

In this dissertation, we focus on Backdoor as a type of Trojan exploited by an attacker

to cause targeted misclassification. A clean DNN model f is expected to perform similarly

when a small amount of disturbance exists on the input data. Therefore, f(z; + Az, 0) = y;

24

o

Fault

N

n
@ E
6}
2 G
3 = =
=1 £
5 5 2 g
a E c 5
c o = 6
= g c 3
s 3 3 o011 &
S o{oaHoH1¥1) & S e e T 8
L a5 e TERInY!
© 1HoHoH1HoHo 1 S0 10
e el Tt T 25 50 7.5
141414141 25 50 75 — e g Predicted Labels
[T Predicted Labels wr Hio) § -G
}‘?}1’_9’_}’,0 T L L I 1 .
1{1H1HaHaHa 17171515111
T o o1 T o oX
0-1H1K0K0 0 o IR
7 i et TRt
Ho}a 1o} 1}z CRERENNE e
i ENER! \f
oG 2 1H{oH{1HoHoK1
4

o

0
]
-1
©
3
<
s
2
=
°
<
E]
o
o

Ground Truth Labels

(=]
Trigger Added Input

Trigger Added Input

0.0 5

0.0 2.5 5.0 7.5
Predicted Labels

2.5 5.0 7.
Predicted Labels

Figure 3.1: Backdoored Model behavior with clean inputs (top) and trigger added inputs
(bottom). Fault injection to the model changes the behavior of the classifier, as shown by
the confusion matrices.

if and only if f(x;,0) = y;, where Az is a small disturbance on the input . We say a DNN
model f has a backdoor if f(x;,0) =vy; and f(x; + Ax,0) = 7.

Earlier works [14,41,71,126] demonstrated that backdoor attacks pose a threat to the
DNN model supply chain. Specifically, DNN models can be backdoored during the training
phase if the model training is wholly or partially (transfer learning) outsourced [71]. More-
over, compromised model-training code can be an attack vector for backdoor attacks since
it can train a backdoored model even if the model is trained with the local resources and

clean training data set [14].

3.3 Threat Model

Same as in earlier works [71,81,126,176,240], we assume that the attacker
e knows the model architecture, parameters and the task of the target model;
e does not have access to the training hyperparameters or the training data set;

e has a small percentage of the unseen test data set;

25

e is involved only after the model deployment in a cloud server and therefore does not
need to modify the software and hardware supply chain;

e resides in the same physical memory as the target model;

e has no more than regular user privileges (no root access).
Such threat models are well motivated in shared cloud instances targeting a co-located host
running the model and in sandboxed browsers targeting a model residing in the memory of
the host machine [42,49,239]. Moreover, the previous research on model stealing attacks [47,
95,164, 212,244] validates our white-box attack assumption. The test data required by our
attack does not belong to the victim and is not in the training data set. Hence, it can be
easily collected and labeled by the attacker since the task of the target model is known.

To better understand our attack, we illustrate an example in Figure 3.1. The attack

works as follows:

1. Offline Phase - Profiling Target Model and Memory: By studying the model parameters
and the memory, the attacker generates a trigger pattern and determines the vulnerable

bits in the target model.

2. Online Phase - Rowhammer Attack: After the target model is loaded into the memory,
using Rowhammer, the attacker flips the target bits by only accessing its own data

that resides in the neighboring rows of the weight matrices in the DRAM.

3. Targeted Misclassification: After the backdoor is inserted, the model will misclassify
trigger-added input to the target class. The misclassification will persist until the
backdoored model is unloaded from the memory. Since the model in persistent storage
(or in the software distribution chain) is untouched, malicious modification to the

model is harder to detect.

26

3.4 Backdoor Injection using Rowhammer

3.4.1 Offline Attack Phase

In the offline phase of the attack, we optimize the trigger pattern and the bit-flip locations
in the weight matrices. To do so, we first extract the profile of vulnerable bits in the DRAM

and then train the backdoor model with new constraints.

3.4.1.1 Memory Profiling For Adjacent Rows

For the Rowhammer attack to work, we need to locate physical rows adjacent to victim
rows that require finding physically contiguous memory addresses. We exploit SPOILER
vulnerability [91] in Intel processors to determine which virtual addresses within an array
are contiguous physically.

After performing SPOILER and determining which addresses are contiguous physically,
these addresses need to be filtered even further to addresses that are within the same bank.
This is again performed using another timing side-channel attack known as row conflict [167],
which measures the difference in read times between two addresses to determine if the row
buffer for the bank was cleared, resulting in a longer read time and extrapolating bank

continuity.

3.4.1.2 Memory Profiling For Faults

Memory profiling is a process of finding vulnerable addresses in the DRAM. This process
can be performed before the victim starts running. For DDR3 DRAMSs, we implement a
double-sided Rowhammer attack where we place a victim row between two attacker-owned
rows. We set the victim rows to all zero and attacker rows to all one and repeatedly access
the attacker rows. Then we check if there is any zero to one flip in the victim row. We find
the one to zero flips similarly. For DDR4 systems, double-sided Rowhammer does not work

due to the TRR mitigation implemented by the DRAM vendors. Therefore, we designate

27

alternating rows to be attacker and victim.

Assuming the bit flips are uniformly distributed over a memory page and a faulty memory
cell can be flipped only in one direction, given a chain of bit offset {bo, by, ..., b1} in a
memory page, the conditional probability of finding a suitable target page ¢ in N flippy pages

can be calculated as

P(tH{bng, } € {0 = 1} {bn, o} € {1 = 0}) =

k—1 n i -1 n —j N
1- (1] = x[[/=) , (3.1)
Pl S —1 j:OS_k_j
where ng_,; and n,_,o are the average numbers of faulty memory cells in a page, flippable in
the direction from 0 to 1 and 1 to 0 respectively, which are device-dependent values, k and [
are number of bit locations which need to be flipped in the direction from 0 to 1 and 1 to 0
respectively, and S is the total number of bits in a page. Previous research [149] shows that

no—1 and ni_,o are almost equal to each other. Therefore, Equation 3.1 can be reduced as,

k+1-1

p(t{bno .} € {0 = 1}, {bay o} € {1 = 0}) ~ 1 — (1 - 11 ”O*IET:“ - l) . (3.2)

=0

It takes 94 minutes to profile 128 MB of memory, but this is done offline before the victim
starts running. Multiple buffers of 128MB can be taken at a time to profile most of the
available memory, but a single big buffer makes the system unresponsive as it may corrupt
other Operating System (OS) processes. Figure 3.2 shows the sparsity of the bit flips in the
profiled 128MB buffer and one of the 4KB pages in DDR3 and DDR4 DRAM chips.

Although we use state-of-the-art memory hammering techniques, we have found 34 bit
flips in a 4KB page in DDR3. Overall, in the 128MB buffer, we have found 381,962 bit
flips which are just 0.036% of the total cells in the buffer, as illustrated in Figure 3.2. For
profiling DDR4, we use a 15-sided Rowhammer attack. We tested 6 different DDR4 chips

and averaged the number bit flips per page for each device. We also calculated the average

28

< 1r v =
(O]
©
£
@ 64 ° ! LI . .| [! Wl . ! J
1 64 128 192 256 320 384 448 512
64- bit Words
(a) DDR3
< 1m . T T~ .]
> .
©
i
564“) » e | \.. P .'x ° .\. | -
1 64 128 192 256 320 384 448 512
64- bit Words
(b) DDR4

Figure 3.2: The bit flip locations in the profiled 128MB memory buffer and one of the 4KB
pages show the sparsity of the bit flips. Only about 0.036% of the DRAM cells in the
profiled memory are found to be vulnerable.

number of bit flips per page for the memory profiles published by earlier work [201] and
summarized the results in Table 3.1.

Specifically, we can estimate the probability of finding a suitable target page by fixing
the DRAM-specific parameter ng_,; and n,_g for a DRAM using Equation 3.2. In line with
the previous research [149] we also observe that number of bit flips from 0 to 1 and 1 to 0
are almost equal. Therefore, using the results of our profiling experiments, we estimate that
ng_1 + nio = 34. Total number of bits in a page is S = 32,768, and the total number
of pages is N = 32,768 in a 128MB memory buffer where the page size is 4KB. Therefore,
when k = 1, i.e., for only one bit offset {by} in a page, we can calculate the probability of
finding a target page in a 128MB memory buffer as p(t[{bo}) ~ 1. Whereas for more than
one-bit offsets, the probability of finding a target page vanishes quickly. Specifically, for
{bo, b1}, p(t|{bo}) = 0.03 and for p(t|{bo, b1, b2}) = 0.00003. Therefore, in later experiments,

we assume we can only flip one bit in a memory page.

29

Table 3.1: Average number of bit flips per memory page for 14 DDR3 and 6 DDR4 chips.

The tags in DRAM columns represent different brand/model information. The results for

DDRA3 results are calculated from double-sided Rowhammer profiles [201]. DDR4 results
are from the chips we profiled using n-sided Rowhammer.

DRAM Average # of Flips DRAM Average # of Flips
Per Page Per Page
Al 12.48 El 12.46
A2 1.92 E2 2.02
A3 1.11 F1 28.77
DDR3 A4 15.85 G1 1.62
B1 1.05 H1 1.66
C1 1.60 I1 8.28
D1 1.08 J1 1.25
K1 100.68 L2 13.98
DDR4 K2 109.48 M1 2.04
L1 3.12 N1 2.72

3.4.1.3 Constrained Fine-Tuning with Bit Reduction (CFT+BR)

We propose a novel joint learning framework based on constrained optimization to learn the
bit flip pattern on the network weights as well as the data trigger pattern simultaneously.
Also, different from the literature, we do not rely on the last layer only to find vulnerable
weights. Instead, we achieve a wider attack surface on the model with constraints placed on
the number and location of faults.

To preserve the performance on clean data, given a collection of test samples {z;} and

their corresponding class labels {y;}, we propose optimizing the following objective:

min max F(Af,Azx) =
AOEAO | Az||oo<e

> [(1 —a) -f(f(a:he + Ae),yi) ta ﬁ(f(xi N A@),g)}, (3.3)

%

where Af, Ax denote the weight modification pattern and the data trigger pattern, y de-
notes the target label, ¢ denotes a loss function, f denotes the network parameterized by 6

originally, o € [0, 1] denotes a predefined trade-off parameter to balance the losses on clean

30

Algorithm 1: Learning realistic Rowhammer attack for hardware implementation
Input: A DNN model with weights ¢, number of bits Ny, that are allowed to be
flipped in the memory, objective F', parameter €, learning rate 7, and
maximum number of iterations T’
Output: Backdoored model #* and trigger pattern Ax*

1 A0+ 0, Az* + ()

2 for t € [T] do

3 if update the trigger == true then

4 | Az Az* + € sgn(Va F(AG%, Az*));
5 end

6 M <+ Group_Sort_Select(|V ao F (A0, Az*)|,
7 | Ny, descending');

8 AG* +— AO* — n- [VAQF(AH*, A;C*)]M,

9 if bit reduction == true then

10 | 6" < Floor((6 + AG*) ® 0) @ 6;

11 end
12 end
13 return 6%, Az*

data and triggered data. A large a value would cause the attack to give a more aggressive
effort to increase the Attack Success Rate while sacrificing Test Accuracy, and a low « value
would cause the attack to preserve the Test Accuracy while sacrificing the Attack Success
Rate. Ideally, a moderate « value should be chosen to get a high Attack Success Rate while
preserving the Test Accuracy as much as possible. Note that A© denotes a feasible solution
space that is restricted by the implementation requirements of the hardware fault attack.
Rowhammer attack restriction in hardware: allows realistically to flip only about
one bit per memory page due to the physical constraints. Since the potentially vulnerable
memory cells in the DRAM are sparse, the probability of finding a suitable target page to
locate the victim is very low for more than one bit flip offsets (See Section 3.4.1.2). Such a
restriction forms the feasible solution space A© in learning the bit flip locations sparsely.
To solve the constrained optimization problem defined in Equation 3.3, we also propose
a novel learning algorithm as listed in Algorithm 1 that consists of the following four steps:
Step 1. Learning data trigger pattern Ax: The goal of this step is to learn a trigger

that can activate the neurons related to the target label y to fool the network. Trigger

31

pattern generation starts with an initial trigger mask. Then, we use the Fast Gradient Sign

Method (FGSM) [66] to learn the trigger pattern. The update rule is defined as

Ar = Ax™ + €-sgn(Va F(A0*, Ax™)), (3.4)

where Af*, Az* denote the current solutions for the two variables, V denotes the gradient
operator, and sgn denotes the signum function. € > 0 denotes another predefined parameter
to control the trigger pattern. Since it acts as a learning rate of the trigger, smaller values
update the trigger slower but may be more effective in finding the optimal pattern.

Step 2. Locating vulnerable weights: Now, given a number of bits that need to be
flipped, Nyiip, our algorithm learns which parameters are the most vulnerable. In this step,

we apply two constraints to the optimization:

e C1. Locating one weight per bit flip towards minimizing our objective in Equation 3.3

significantly;

e (C2. No co-occurrence in the same memory page among the flipped bits.

Recall that when a DNN model is fed into the memory, the network weights are loaded
sequentially page-by-page, where each page is fixed-length and stored contiguously. We can
view this procedure as loading a long vector by vectorizing the model. Therefore, to guarantee
we choose at most one weight per memory page, we divide the network weight vector into
Nyip groups as equally as possible, as illustrated in Figure 3.3. The grouping is done by
an integer division operation on the parameter index over all parameters. If the index of
a parameter is ,,, the group ID of that parameter is determined as i, div(4096 * N, 0yp)
where Ng,oup is the number of pages per bit flip, and div is integer division operation.
Nyroup depends on the chosen number of bit flips Ny, and can be calculated as Ngyoup =
N, div(4096 * Nyy;,) for a DNN model with number of parameters, N,,. After grouping the
parameters, we rank the weights per group based on the absolute values in the gradient over

AB, i.e., |VagF| where | - | denotes the entry-wise absolute operator, in descending order.

32

4KB

BN ——
thp' 1 Nﬂip

T Y

0 1

Figure 3.3: The illustration of targeted model weights across the DNN model weight pages
in the memory. The bulls-eye denotes the targeted bit location in a page.

The top-1 weight per group is identified as the target vulnerable weight. Note that, given
the Constraint (C2), Ny, cannot be larger than the number of pages that the DNN model
weights occupy in the memory to guarantee there is at least one full page in every group.

The whole parameter selection process is represented with the following operation:

M <« Group_Sort_Select(|V aoF (A0, Ax™)|, Ny, descending'), (3.5)

Step 3. Adversarial fine-tuning Now, given a collection of located vulnerable

weights, denoted by M, we only need to update these weights in backpropagation as follows:

A = AG* — 1+ [V agF (A", Ax™)| s, (3.6)

where [-|y¢ denotes a masking function that returns the gradients for the weights in M,
otherwise 0’s, and 7 > 0 denotes a learning rate.

Step 4. Bit reduction To meet the physical constraints of the Rowhammer, the final
part of our attack procedure requires bit reduction. Rowhammer can only flip a very low
number of bits in a 4KB memory page, and more than one faulty memory cell almost never
coexists within a byte. Therefore, we define a bit reduction function as Floor(6 & 6*), where
@ denotes the bit-wise summation, and function Floor rounds down the number by keeping

the most significant nonzero bit only. For instance, letting 6 = 11015 and 6* = 10105, then

33

Floor(f @ 6*) = Floor(01115) = 1005. In this way, we ensure that only one bit is modified in

a selected weight while maintaining its change direction and amount as much as possible.

3.4.2 Online Attack Phase: Flipping Bits in the Deployed Model

When we access a file from the secondary storage, it is first loaded into the DRAM and when
we close the file, the OS does not delete the file from DRAM to make the subsequent access
faster. If the file is modified, the OS sets the dirty bit of that modified page and writes
back according to the configured policy. Otherwise, the file remains cached unless evicted
by some other process or file. As Rowhammer is capable of flipping bits in DRAM, we can
use it in the online attack phase to flip the weights of the DNN file as it is loaded in the
page cache. The weight file is divided into pages and stored in the page cache. We can flip
our target bits as identified by the backdoored parameters *, in Section 3.4.1. The OS does
not detect this change as it is directly made in hardware by a completely isolated process,
and it keeps providing the page cached modified copy to the victim on subsequent accesses.
Thus, the attack remains stealthy. In the online phase, we need to flip bits in the weight file

in the required pages and page offsets. We achieve this in three main steps.

3.4.2.1 Releasing the Flippy Rows

Flipping targeted bits in the model weights requires manipulating the memory mapping of
the weight file and placing the target pages to previously found flippy physical addresses. To
control the memory mapping, we exploit the per-CPU page frame cache. Page frame cache
is an optimization implemented in the Linux kernel to utilize hardware caches better in the
local CPU by reallocating the recently unmapped page frames in first-in-last-out order [24].
As earlier works showed [33,110,240], an attacker process can reliably map the victim page
to the recently unmapped pages by exploiting the page frame cache. This unmapping-
remapping process is shown by the pseudo-code in Listing 3.1. Although we do not need

bit flips in all pages of the weight file, we need the target pages to be mapped to previously

34

w N

buffer = mmap(baitPages * PAGESIZE)
munmap (flippyPageAddr, PAGESIZE)

(i = 0; i < bait_pages; i++)

munmap (&buffer [i*PAGESIZE] , PAGESIZE)

Listing 3.1: Pseudo-code showing how pages can be forced into a specific area in memory

determined flippy page locations. We use a buffer with size baitPages x PAGESIZE to
make sure the parameters we do not target in the weight file are not mapped into the flippy
locations. The number of flippy pages and baitPages should sum up to the total number
of memory pages consumed by the weight file.

We match the target pages in the weight file to the flippy locations and the remaining
pages to the non-flippy locations in our buffer. After obtaining a one-to-one mapping between
the weight file and our buffer, we start unmapping in the reverse direction to fill the page

frame cache.

3.4.2.2 Mapping the Model Weights to Flippy Rows

After releasing the flippy pages and buffer, we immediately map the whole weight file
from start to end using mmap function. The OS automatically maps the weight file to the
unmapped locations in the buffer in the right order. An example case is shown in Figure 3.4
for a quantized ResNet20 model. Since all physical addresses match with the released pages
of our buffer, there is a one-to-one mapping.

Another way to bring only the target pages of the weight file to the memory is by stating
the file offset in the mmap function and using fadvise with FADV_RANDOM flag to prevent the
neighboring pages of the file prefetched by the OS, as proposed in [240]. However, in our

experiments, we observe that using fadvise does not reliably prevent prefetching.

3.4.2.3 Flipping Bits in the Weight File

Finally, the attacker rows are accessed repeatedly to flip bits at the same offsets as found

in the offline phase but this time on the weight file. In our experiments, we use n-sided

35

ESO = g : --'H.__\--\' =
=40 - e - 5 s =

Physical Address

o o o o o o o o
— Al ™ < Lo] (<] N~ (ce]

Physical Address of Released Pages

Figure 3.4: Physical Address of released pages vs ResNet20 weight file. First pages of the
weight file are mapped to the last released pages of our buffer.

Rowhammer pattern [59] with 7 aggressor rows on DDR4 systems to bypass TRR protection
and reproduce the bit flips found in the offline phase. Note that additional bit flips can
occur if more than one bit flip is found within a single page. We evaluate the effect of these
additional bit flips in Section 3.5.

After completing all the steps in Online Phase, the corrupted weights stay in the memory;,
and the attacker is able to add the pattern generated in Offline Phase to any image to trigger

the backdoor and misclassify the input in a targeted way.

3.4.3 Weight Quantization

The weights are stored as N,-bit quantized values in the memory as implemented in NVIDIA
TensorRT [137], a high-performance DNN optimizer for deployment that utilizes quantized
weights [155]. Essentially, a floating-point weight matrix Wy, is re-encoded into N,-bit signed
integer matrix W, as W, = round(W;,/Aw) where Aw = max(W,)/(2Y~! — 1). In our

experiments, weights are 8-bit quantized and stored in two’s complement forms.

36

3.5 Evaluation

3.5.1 Experimental Setup

To demonstrate the viability of our attack in the real world, we implemented it on an 8-
bit quantized ResNet-18 model trained on CIFAR-10 using PyTorch v1.8.1 library. The
clean model weights that are trained on CIFAR-10 are taken from [176] for ResNet-18 and
from [84] (580 stars on GitHub) for other ResNet models. Moreover, we experimented on
larger versions of ResNet models, such as ResNet50, trained on the ImageNet data set. For
the models trained on ImageNet, we use pre-trained models of Torchvision library (9.1K stars
on GitHub), which has been downloaded 28 million times until now [209]. We run the offline
phase of our attack on NVIDIA GeForce GTX 1080Ti GPU and Intel Core i9-7900X CPU.
Rowhammer experiments are implemented on DDR3 DRAM of size 2 GB (M378B5773DHO0-
CH9) and DDR4 DRAM of size 16 GB (CMU64GX4M4C3200C16). The online phase ex-
periments are conducted on a system running Ubuntu 20.04.01 LTS with a 5.15.0-58-generic
Linux kernel installed, using a DDR4 DIMM with part number CMU64GX4M4C3200C16.
The inference is done on an Intel Core i9-9900K CPU with a Coffee Lake microarchitecture.
DRAM row refresh period is kept at 64ms which is the default value in most systems. We
use 7-sided Rowhammer to flip bits in the memory. We will provide an explanation for how
we decide the number of aggressor rows in Section 3.5.3.

We compare our approach with BadNet [71], and TBT [176] as well as fine-tuning (FT)
the last layer. We also include the output of our Constrained Fine Tuning (CFT) without
bit reduction in Table 3.2 for comparison. We selected the baseline methods with the aim
of creating a backdoor-injected model. We excluded the non-backdoor attacks, such as
Deephammer [240], and Terminal Brain Damage [81], in the performance comparison since
they only aim to degrade the accuracy of the model. In contrast, we aim to keep the accuracy
as high as possible while increasing the Attack Success Rate. For the offline phase results,

we keep all the bit flips in the weight parameters assuming they are all viable. In the online

37

phase results, we keep the bits that are possible to be flipped by Rowhammer and exclude
the others. We use 128 images from the unseen test data set for all the experiments in
CIFAR-10. TA and ASR metrics are calculated on an unseen test data set of 10K images.
In all experiments, we used a = 0.5 for Algorithm 1. The trigger masks are initialized as
black square on the bottom right corner of the clean images with sizes 10x10 and 73x73
on CIFAR-10 and ImageNet, respectively. ¢ in Equation 3.4 is chosen as 0.001. For the
ImageNet experiments, we use 1024 images from the unseen test data set to cover all 1000

classes. TA and ASR metrics are calculated on unseen test data set of 50K.

3.5.2 Evaluation Metrics

Number of Bit Flips (Nysp): As in [16,81,176,240], the first metric we use to evaluate
our method is Ny, which indicates how many bits are flipped in the new version of the
model. The Ny;;, has to be as low as possible because only a limited number of bit locations
are vulnerable to the Rowhammer attack in DRAM. As the Ny, increases, the probability
of finding a right match of vulnerable bit offsets decreases. Ny, is calculated as Ny, =
Zle DO gy where D is the hamming distance between the parameters) and 6* at
the [-th layer in the network with L layers in total.

DRAM Match Rate (rpaen): After a Rowhammer-specific bit-search method runs,
the outputs are given as the locations of target bits in a DNN model. However, not all of
the bit locations are flippable in the DRAM. Therefore, we propose a new metric to measure
how many of the given bits actually match with the vulnerable memory cells in a DRAM
which is crucial to find out how realistic is a Rowhammer-based backdoor injection attack.
T'maten 18 calculated as, raten = %%‘:’ x (1— %) x 100 where 1,44, is the number of matching
bit flips, Ny is the total number of bit flips, S is the number of bits in a page, and ¢ is the
number of accidental bit flips within a page. Since the bit flip profile varies among different

DRAMSs, even between the same vendors and models, 7,,4:cn is a device-specific metric.

Test Accuracy (TA): In order to evaluate the effect of backdoor injection to the main

38

task performance we use Test Accuracy as one of the metrics. Test Accuracy is defined as the
ratio of correct classifications on the test data set with no backdoor trigger added. Ideally,
we expect the backdoor injection methods to cause minimal to no degradation in the Test
Accuracy in the target DNN models.

Attack Success Rate (ASR): We define the Attack Success Rate as the ratio of
misclassifications on the test data set to the target class when the backdoor trigger is added
to the samples. Attack Success Rate indicates how successful a backdoor attack is on an

unseen data set.

3.5.3 Rowhammer Attack on Deployed Model - Online

We experiment the online phase of the attack on DDR3 and DDR4 DRAM chips. We
empirically observe that when there are multiple bits required to be flipped on the same
4KB page in a particular direction ({0 — 1} or {1 — 0}), there is no matching target
page in the 128 MB Rowhammer profile. This observation shows that multiple bit flips at
desired page offsets and bit-flip direction is an unrealistic assumption. On the other hand,
we observe that there is always a matching page in the profiled memory buffer with a bit flip
in the desired location and flip direction if there is at most one bit flip in the memory page.
This observation is consistent with our probability analysis in Section 3.4.1.2. Apart from
the targeted bit flips, we observed that some DDR4 DRAMSs with large average bit flips in

a page give accidental bit flips in addition to the target offsets which reduces the 7,,4¢ch-

Effect of Number of Attacker Rows on Bit flips The idea of a multi-sided Rowham-
mer attack is that instead of a single row above and below the victim row being read, another
victim is created above the attacker row, and another attacker above the new victim a vari-
able number of times. Figure 3.5 shows how the number of attacker rows changes the bit
flip rate.

Figure 3.6 shows that by reducing the number of aggressors in n-sided Rowhammer from

39

1000

500

Average # of
Bit Flips

L1 L e
N UYDY X 9 o A

LR ENENE R RN EVREERN
of Aggressor Rows

Figure 3.5: Average number of bit flips on an 8MB buffer vs the number of sides in an
n-sided Rowhammer attack.

15 to 7, we can reduce the number of additional flips to 4 bits per target page. Therefore,
we use 7-sided Rowhammer in the later experiments. Random bit flips outside the target

location have a very limited effect on both TA and ASR since the target model weights are

quantized [81].

=
o

40
n
=2
o 330
5 g
%LZO
E [
g ol
<

o

010 101 111 000
Agressor-Victim-Agressor pattern

Figure 3.6: Average number of bit flips per page for 15-sided (blue) and 7-sided (red)
Rowhammer attack patterns.

As shown in Table 3.2, we get 99.9% 7,,0:0n for every DNN model we attack with CFT+BR
since all of the required bit flips we need are in separate pages. Whereas BadNet, F'T, TBT,
and CFT, have very low numbers achieving as low as 1 bit flip since they require multiple-bit

flips with specific locations and flip directions in the same memory page.

40

66°66 02'96 ©6'89 SLPT| 2’86 ¥9°0L SLPT | MA+IID

€04z ¢6v 1L99 16§ | 66'66 SGOL g9gT LdD 09LG sosedif

8T°0 010 8L€. T | 8666 09GL €FS zaL - D wwm%

10°0 60°0 LLgL el | 2e96 P89 8LL'E6 Ld 0GIoNSY

F0°0 G0°0 €799 66T | TT'66 S6'€L 9TG'6cE | JoNped

. JoNOSRW]

66°66 THIL 6S'89 €9FT | 26Tl 8T0L €9PT | MA+LID

1L°GC 010 €669 88¢ | 9L66 STOL 60ST LdD GLEG sosudif

8T°0 G0 L60L T 9866 69C. £8G 1AL NMW.W wwm@

200 8T°0 G6'0L TIT | ¥I'66 0889 9GLFG Ld NS

20°0 6000 6£0L 00T | €L66 TS0L LFO'TFF | 3oNped
66°66 0£'¢6 1.'06 66 | 9296 G6'C6 66 | UG+LdD

6192 9€°0 °g16 11 0666 6£C6 4 LdD 09Le sosedif

G0'T cUsy 096 1 78'88 1878 56 LAl ﬁww%w m.wﬁmmm

100 OTFE 0TT6 T PEG6 08'88 L99'S Ld RTIONEN

€00 Sad 90'¢6 9I¥ 88°66 19°L8 TOS€6V'T | 19NPed
66°66 8G'68 9968 96 | OV'I6 LL'T6 €6 | gd+L1ID

$9'GT 20z e 0T | GLS6 GT06 6¢ LAD SM.MWMWM

87°0 er's 9976 T 0968 0618 012 LL WMN@.S “.mé OTHVAID
F0°0 168 €96 T 6506 L8TS SI€T Ld NSO

20°0 2e’L 1926 €5 | 6666 0988 F00'9FC | 3ONPed
66°66 L9'C6 068 O | T9%6 VT'16 0T | ¥g+Idd

€L°TC 0FFT 6216 G G566 60°06 e LAD 69 so5ed

ke L7 cLT6 1 €FG6 1998 i LAl wmm m.aﬁ%m

F0°0 06° cL16 T 0126 9878 8€G'C Ld VEIONEY

20°0 £9°C 9LT6 €6 | 8666 9698 T68'GLT | joNped

(%) e | (%) asV (%) VL "N [(%) ¥Sy (%)VL N | pourn 1N 1osere(

oseyJ ouIu()

oserq OUIPO

“IOWRYMOY SUlsn yorjje uor}dslur 10opyoeq
S[qeIA ® I0] 00T Ieau aq jsnw ‘4, ‘giqeddry A[renjor are jery (gy) siiq Iejeurered 100pyor(oY) Jo aFejusniad ay)
Yer} 90N "P[O] UT WOPLIM oI SYNSAT YG+L D Posodord m(Q 0G/FE-19NSoY WM [FRT] 1ONOBewW] pue ‘QT/7€/07-10NSOY s
[60T] OTUVAID U0 LAL PUe ‘LA ONPed Spoylott surpseq o) qim Yg+LJI0D ‘LD Spoylou mo jo uosiredwoy) :g'¢ (e,

41

Loss

0 400 800 1.2k 1.6k 2k
Training Step

Figure 3.7: Total loss graph at every training iteration during the backdoor injection to the
ResNet18

3.5.4 CIFAR-10 Experiments

We experiment with our proposed method on ResNetl8, ResNet20, and ResNet32 trained
on CIFAR-10 along with the baseline methods, such as BadNet, FT, and TBT. We also
compare our partial method, CFT, with our complete method (CFT+BR) which includes
the Bit Reduction. During the iterations of CFT+BR, we observed that the total loss spikes
after each Bit Reduction and quickly decreases again and eventually converges to a solution
0 + A6 as described in Equation 3.6. Figure 3.7 shows the loss progress after each epoch
with one batch of data while optimizing a constrained weight perturbation Af to a ResNet18
model on the CIFAR-10 data set. After every 100 iterations, we apply Bit Reduction, which
causes spikes in the loss curve. We compare our method with baselines for both phases since
our attack scenario includes offline and online phases. Recall that in the offline phase, the
optimization takes place to find the vulnerable bit locations and generate a trigger pattern.
First, we evaluate the modified models with the corresponding trigger patterns. Then, for
each modified part of the weight parameters, we look for a matching target page location on
the profiled memory, which constitutes the online phase. If multiple bits need to be flipped in
the memory, we choose the one with the largest gradient value so that we get the maximum

possible performance from the baselines. Finally, DRAM Match Rate 4 is calculated as

42

explained in Section 3.5.2. The experiment results are summarized in Table 3.2.

BadNet and F'T have no control over the Ny;, since they do not introduce any constraints
during the optimization. Therefore, in the offline phase, BadNet requires up to one and a half
million bit flips to inject a backdoor successfully. Although F'T modifies only the last layer
while keeping the other layers constant, meaning fewer bit flips than BadNet, we observe that
up to 8,667 bits have to be flipped. TBT has control on the number of modified parameters
which enables partial control on the Ny, since the number of modified parameters limits the
maximum value Ny, can get. Therefore, we select the results that reproduce their claimed
performance in the original work [176] without modifying too many weight parameters and
increasing the Ny, too much, and thus, decreasing 7,,,4¢c, further. In the offline phase, TBT
finds a much smaller number of bits compared to BadNet and FT due to the limit on the
modified parameters. Our experiments show that the CFT+BR method successfully injects
a backdoor into ResNet20 model with 91.24% TA and 94.62% ASR by flipping only 10
bits out of 2.2 million bits in the DRAM. In ResNet32 and ResNet18, CFT+BR achieves
91.46% and 95.26% ASR, respectively, with a maximum of 1.66% degradation in the TA.
We observe that Ny, values in BadNet and FT depend heavily on mode size. As the total
number of bits increases, they require more bit-flips to achieve similar performance. On the
other hand, we do not observe a significant dependence on the model size in TBT, CFT,
and CFT+BR methods in terms of Ny;,, TA, and ASR. In BadNet, FT, and TBT, the bit
flips are concentrated within the same pages. Especially FT and TBT targets on the last
layer of the DNN models. Since the last layer of the Resnet20, ResNet32, and ResNet18
models occupy only one memory page in DRAM, the bit-flip locations found in the offline
phase of FT and TBT reside within a single page. For instance, 210 bit-flips found by TBT
on ResNet32 are all on the same page. However, as we mention in Section 3.4.1.2, only
the pages with one targeted bit location can be found in DRAM in practice. Therefore, we
choose the bit flip with the largest gradient in a memory page and keep it modified and return

the other parameters to their original values. Finally, we evaluate their performance on the

43

test data set. In the ResNet20 and ResNet32 models, we observe that the ASR of BadNet,
FT, and TBT drops down below 10% while the Test Accuracy values increase back to their
original values. We claim that the significant decrease in ASR values can be explained by
the diffusion effect of optimizing the parameters in an unconstrained way. When the attack
is implemented on DRAM using Rowhammer, 7,4, values of BadNet, FT, and TBT are
lower than 3% for every DNN model. In CFET, 7,4 is relatively higher than the other
baseline methods since it modifies only one parameter in a page. However, it does not put a
constraint on the number of bit flips within a byte during the optimization. Therefore, the
attack performance degrades drastically in practice. In all experiments, CFT+BR has 99.9%
Tmateh Since it already considers the bit locations that can be flipped during the attack. Since
the bit flips are sparse across different memory pages in CFT+BR, 100% of the bit flips can
actually be flipped. A small number of bits may be flipped in random locations, but it does
not affect the performance of the attack significantly. We show that lower 7,4, values lead

to low ASR in backdoor injection attacks using Rowhammer.

3.5.5 ImageNet Experiments

We also compare our method with the baseline methods on models trained on the ImageNet
ILSVRC2012 Development Kit [184] data set, which consists of 1000 classes of visual objects.
We used pre-trained ResNet34 and ResNet50 from the model zoo [209] as the target models.
ResNet34 and ResNet50 include 172 million and 184 million bits, respectively. Note that both
the model and data set sizes are significantly larger compared to our CIFAR-10 experiments.
As the TA and ASR, we use top-1 accuracy results. The results are summarized in Table 3.2.
The same comparison methods we apply in CIFAR-10 are valid in ImageNet experiments as
well.

In the offline phase of the attacks, we observe that each method shows a different response
to the increase in the model and data set sizes. For instance, BadNet and FT require

more than 350K and 50K, respectively. Compared to CIFAR-10 models, BadNet is not

44

affected significantly. However, Ny, for F'T becomes 17 times larger on average on the
ImageNet models. TBT locates around 550 Ny, on the ResNet34 and ResNet50 models in
the offline phase, which is 5 times larger on average than the CIFAR-10 experiments. CFT
and CFT+BR locate around 1500 Ny, on the ResNet34 and ResNet50 models in the offline
phase, meaning 45 times and 22 times larger for CF'T and CFT+BR, respectively.

In the online phase, we observe that none of the baseline methods has a significant attack
performance. For instance, in the BadNet method, although the model sizes increase 5.5
times, the number of modified pages increases only 1.5 times on average. Similarly, TBT
modifies only one page in the last layer of the ResNet34 and ResNet50 models, even though
the last layers of the models have more than 10 pages. This clearly shows that as the model
size increases, the density of bit flips required by the baseline models increases, meaning the
attack tends to focus on certain regions instead of uniformly distributing the bit flips. The
high density of the bit flips leads to 7,4, rates as low as 0.02%. Although FT modifies
most of the pages in the last layer, the fact that the bit locations are not optimized at the
beginning causes vanishing ASR. Overall, we observe that the claimed ASRs can be achieved
only when 7,40, is large enough. Although CFT achieves much larger 7,4, values than the
other baseline methods, lacking Bit Reduction makes the attack focus on multiple bit flips
within 8-bit parameters, which, in return, causes lower than 5% ASR on the models trained
with ImageNet data set. In contrast, CFT+BR can inject the backdoor to ResNet models
with up to 96.2% ASR and a maximum of 7.2% degradation in the TA, which makes it the
best-performing backdoor injection attack compared to the baseline methods. These results
show that our approach generalizes well to larger data sets and models. Note that although
Nyip increases as the model gets larger in CFT+BR, it is still possible to flip these bits with

99.99% rpmaten, due to the sparse distribution.

45

Clean Inputs Clean Inputs Trigger Added Inputs

Trigger Added Inputs

Label: car Label: car Label: car W Label: car
_r‘ Pred..car v/ g Y Pred.:car v/ Pred.: car @ Pred.:bird X
Label: frog Label: frog Label: frog Label: frog
Pred.:frogV | uig W Pred.: frogV Pred.: frogV/ r‘ q- "_‘ Pred.: bird X
Label: cat Label: cat Label: cat Label: cat
| Pred.:cat v pred.:cat V' Pred.:cat V' =3 Pred.:bird X
- Label: car M Label: car Label: car Label: car
| Pred.:car V' | Pred.: car v | pred.:car V' .5 Pred.:bird X
Clean Model Backdoored Model

Figure 3.8: The change in GradCAM [190] heatmaps that belong to ResNet18 before the
attack (left) and after the attack (right). The focus of the model shifts through the trigger
pattern if it is backdoored.

3.5.6 Generalization to Other DNN Architectures

We experiment on other DNN architectures, such as VGG11, VGG16, to show that our
attack generalizes. We show that CFT+BR can successfully locate vulnerable bits and
achieves over 90% Attack Success Rate in VGG architectures. The results are summarized
in Table 3.3.

Table 3.3: CFT+BR experiment results on VGG architectures

Model ‘ Base Acc ‘ TA [%] ‘ ASR [%)] ‘ Ny

VGG11 92.35 92.70 100 30
VGG16 92.68 92.57 90.85 100

3.6 Potential Countermeasures

We analyze some of the prominent countermeasures proposed for mitigating bit-flip attacks

against DNN models.

46

3.6.1 Prevention-Based Countermeasures

Binarization-Aware Training [79]' is a method that uses Binarized Neural Networks
(BNNs) [83,178] to increase the resistance of DNNs against the bit flip attacks. This method
significantly reduces the network size. For instance, a binarized ResNet-32 model occupies
only 65 pages in the memory. Although 65 bit flips are not enough to inject a backdoor
using Rowhammer, Ny;;, cannot be larger than the number of pages occupied by the model.
Therefore, our experiments show that using BNNs is an effective defense against our attack
since it aggressively decreases the size of the network and, consequently, the maximum Ny;),.
However, reducing the model size causes accuracy degradation as a performance overhead.
Note that BNNs may still be vulnerable to other fault attacks which do not require the same
physical constraints, such as sparse faulty bit locations.

Piecewise Weight Clustering (PWC) [79] is a relaxation of BNNs. With PWC,
an additional penalty term is introduced to the inference loss function, which forces model
weight distribution to form two clusters. We experiment with our attack against a ResNet32
model trained with PWC penalty term in the loss function. We observe a strengthened
trade-off between the TA and ASR during the optimization.For instance, the ASR drops
down to 43.42% when TA is 89.66% with 112 Ny;,s. On the other hand, our attack achieves
98.49% ASR while degrading the TA down to 9.9% with the same Ny;;,s. The results show
that training the model with PWC does not protect against accuracy degradation and even

targeted misclassification attacks. However, it makes it harder to inject stealthy backdoors.

3.6.2 Detection-Based Countermeasures

Possible defense techniques focusing on detecting the attacks on the model weights [40,115,
118,124] come with an overhead because they need to be deployed together with the model

into the machine learning product.

!Binarization-Aware Training and Piecewise Weight Clustering implementations are taken from https:
//github.com/elliothe/BFA.

47

https://github.com/elliothe/BFA
https://github.com/elliothe/BFA

DeepDyve [118] is a dynamic verification method that uses a checker model along
with the original model for mitigating the transient faults in the inference. It assumes both
models predict the same results for the same inputs most of the time. When the results of
the two models are the same, the result is accepted immediately. However, if the results
are different, the inference is repeated, and the second result from the original model is
accepted. DeepDyve assumes the fault in the model is transient and does not appear in
consecutive queries. However, the bit flips introduced by Rowhammer stay in the memory
until being reloaded from the disk. Since the transient assumption does not hold, even if a
checker model raises an alarm and repeats the inference, the new inference is made by the
backdoor-injected model and will not be detected.

Weight Encoding [124] proposes additional matrix multiplication and weight extrac-
tion. Thus, this method can detect only the topmost sensitive layers in the network to keep
the overhead low. However, our attack can target all layers to inject a backdoor. Therefore,
the spatial locality assumption does not hold with our attack. Using the overhead numbers
in [124] for ResNet-34, we estimate the time and storage overhead against our attack. Since
the time complexity of weight encoding d; = r(y;),y; = gb(ZfV:Bl B; - K;;) is O(N?), where
Bis ZN, and K is RV*M the estimated execution time overhead of the method is 834.27
seconds. Since the storage complexity of the Weight Encoding is linear, the storage cost
for ResNet34 is estimated as (0.141/8192) x 21779648 = 374.86M B, which is 446% storage
overhead, showing that the proposed method is not scalable.

RADAR [115] is a checksum-based detection method during inference. It divides the
weights into groups and gets the checksum of the most significant bits of parameters in each
group. The original checksum values of the parameters are stored along with the model
and are validated with the original signatures at every inference time. The optimization
constraints can be further increased to avoid flipping the MSB of the weight parameters in
our attack, which can bypass the detection. Assuming linear time complexity, time overhead

goes up to 40.11% for full-size bit protection in ResNet20.

48

SentiNet [40] filters the adversarial inputs using GradCAM heatmaps [190]. We use
the GradCAM implementation from [64] to analyze the output of four sample images that
are labeled as car, frog, cat and car respectively (See Figure 3.8.). Before the attack, the
model correctly classifies all images with or without the trigger pattern. If the trigger pattern
does not overlap with the major features in the image, e.g. frog and cat, the main focus
of the model stays on the object. However, if the trigger pattern overlaps with the main
features, e.g. the wheel of the car, the focus is shifted towards the trigger pattern. After the
attack, regardless of the trigger and object overlap, the focus of the model shifts towards the
trigger pattern, and the model misclassifies all images to the target class, bird. Therefore,
although a GradCAM-based approach can possibly filter the adversarial inputs, it will also

produce false positives even if the model is clean and works correctly.

3.6.3 Recovery-based Countermeasures

Weight Reconstruction: Li et al. [116] propose Weight Reconstruction?® to recover the
clean network after a bit flip attack occurs. Weight Reconstruction aims to recover from an
accuracy degradation caused by the attack. After a bit flip occurs in a weight parameter, the
effect of the change is distributed onto other parameters to reduce the overall effect on the
model performance. We experiment with our CFT+BR attack against a ResNet32 defended
by Weight Reconstruction to evaluate the effectiveness of the proposed defense method. We
applied our attack in two different scenarios. In the first scenario, the attacker is not aware
that the model is defended by Weight Reconstruction and applies the offline phase of the
attack as described in Section 3.4.1.3. As a baseline, our attack achieves 91.46% ASR and
97.77% TA by flipping 95 bits in the memory. After applying Weight Reconstruction, we ob-
served that ASR and TA become 32.89% and 91.02, respectively. In the second scenario, the
attacker is aware that the model is defended by Weight Reconstruction and applies the offline

phase of the attack against a model with Weight Reconstruction. However, if the attacker

ZWeight Reconstruction implementation is taken from https://github.com/z1ijingtao/DAC20_
reconstruction.

49

https://github.com/zlijingtao/DAC20_reconstruction
https://github.com/zlijingtao/DAC20_reconstruction

is aware of the defense and applies CFT+BR on a defended model, our attack successfully
bypasses Weight Reconstruction by achieving 94.04% ASR and 89.51% TA. Therefore, the
Weight Reconstruction approach does not protect the models when the attacker knows the

applied defense.

3.7 Related Works

Rowhammer Attacks on DNNs We compare our work with Terminal Brain Dam-
age [81] and Deephammer [240] in terms of the following factors:

Attacker’s Objectives: The main difference between our work and previous works is the
goal of the attack. In both [81] and [240], the attacker’s objective is to degrade the inference
accuracy of the model on legitimate inputs and cause a denial of service. In contrast, our
attack objective in this work is to keep the inference accuracy for legitimate inputs the
same and misclassify all trigger-added inputs to a target class in stealth by using a unified
objective function given in Equation 3.3.

Assumptions: All [81], [240], and our work assume the attack takes place in a cloud
environment where the model is loaded into system’s shared memory and stays unchanged.
Unlike [240], we do not assume the availability of huge page configuration to bypass virtual
to physical translation.

Attacker Capabilities: Same as our attack, [240] and [81] assume the attacker knows the
model architecture and parameters. [81] also considers black-box setting with random bit
flips. Since our attack objective is more sophisticated, our attack is not applicable in a
black-box setting.

Attack Time: [240] configures the hammering time for each row as 190ms. Since [81]
only simulates the attack, they assume it is 200ms in the calculations. In our setup, it
takes 800ms to hammer one row using a 15-sided pattern during the profiling phase and

400ms using a 7-sided pattern during the online phase. Note that previous works consider

50

only double-sided Rowhammer, which takes less time but is not effective on DDR4 chips
with TRR mitigation. Total online attack time varies between different models and can be
estimated by multiplying the hammering time by Ny;;.

Stealthiness/Detectability: Due to the difference in the attack objectives, the stealth of
the attacks is also different. For instance, Test Accuracy after the attack on VGG16 is given
as around 10% in both [81] and DeepHammer. However, we can preserve the Test Accuracy
at over 92% after our attack while being able to misclassify over 90% of all instances with
an attacker-generated trigger pattern. Since we can preserve the Test Accuracy close to the
base accuracy of the models, our attack is stealthy.

Comparison of Accuracy Degradation: Although the goal of backdoor injection is not
accuracy degradation, the resulting degradation on trigger-added inputs is comparable to [81]
and [240]. In VGG16 trained on CIFAR10, when we add trigger pattern to all images, we see
the accuracy of the model to be 18% (an 80% relative accuracy degradation from baseline).
Alternatively, [240] and [81] claim relative accuracy degradations of VGG16 to be 88% and
90%, respectively (after the attack the models only produce a correct output 10% of the

time).

Accuracy Degradation Attacks Bit-Flip Attack [175] degrades the accuracy of DNN
models to random guess using a chain of bit flips. Targeted Bit-Flip Attack [177] is shown to
be capable of misclassifying the samples from single or multiple classes to a target class on
quantized DNN models. Although these works show that DNN model performance can be
damaged permanently by flipping a limited number of bits in the weight parameters, these
attacks do not make use of an attacker-controlled backdoor trigger. Therefore, they have
very limited control over stealthiness. A binary integer programming-based approach was
proposed by Bai et al. [16] to find the minimum number of bit flips required to make the

model misclassify a single image sample into a targeted class.

51

ML Backdoor Attacks Garg et al. [60] observed that adversarial perturbations on the
weight space of the trained models could potentially inject Backdoor, but it requires either
social engineering or full privileged access to replace the target model with the backdoored
model. [176] and [37] showed that backdoor attacks could be implemented by changing only
a small number of weight parameters. However, both of the works assume any bit location
in the memory can be flipped, which is not practical. Therefore, the practicality of software-
based backdoor injection attacks during the inference phase is still an open question due to

the practical constraints that have been overlooked in previous works.

3.8 Discussion

Alternative Methods for Identifying Target Bits: The CFT+BR algorithm presented
in this work leverages domain-specific knowledge about Rowhammer and DNN behavior
under perturbations. While traditional optimization methods such as Bayesian Optimization
(BO) could theoretically be adapted for this purpose, they present significant challenges.
Specifically, BO struggles with high-dimensional search spaces, such as the millions of bits in
memory, and requires surrogate models that scale poorly with dimensionality. Moreover, BO
is not inherently designed for discrete and heavily constrained problems, which are critical
in this context. Although BO’s sample efficiency and ability to handle expensive evaluations
may be advantageous in smaller sub-problems, it would require extensive customization to
address the constraints of this attack scenario.

Effect of Huge Pages: We assume huge pages are not available since they give an
advantage for finding contiguous memory in physical address space. Even though the target
model uses huge pages, the memory controller would still fragment the huge page into 8 KB
rows in DRAM due to the fixed row size. Also, each chunk is mapped into different banks in
order to increase parallel access. For example, if there are 64 banks in the system, a 2 MB

huge page would be fragmented into 64 chunks and 4 neighbor rows in the DRAM. Although

52

this may hurt the n-sided Rowhammer pattern, it would still be possible to sandwich each
chunk and do Rowhammer. Note that, in memory systems with multiple DIMMs, and ranks,
the number of banks also increases, which would decrease the size of the chunks down to a
single row. In that case, a regular double-sided or n-sided Rowhammer attack would still
work. Since an attacker can choose to profile 4 KB pages in DRAM, finding 512-bit flips in
2 MB would still be practical.

Application on Other Security Critical Tasks: The proposed attack method is a
generic approach and agnostic to the downstream tasks. Therefore, it would work on models

used in other safety-critical tasks, such as voice recognition applications.

3.9 Dynamic Analysis Approach on the Detection of
Fault Targets

While numerous studies have extended Rowhammer’s applicability to areas like cloud envi-
ronments and network-based attacks, recent advancements include targeting sensitive CPU
stack variables to execute malicious code and bypass security measures. In this section, we
investigate the automatic detection of LeapFrog gadgets that enable Rowhammer to break
security assumptions in cryptographic libraries and machine learning models. LeapFrog gad-
gets allow the manipulation of the program counter (PC) stored in the stack to subvert
control flow, bypassing critical security features like authentication and encryption.

Based on how the LeapFrog gadgets occur in the binary, we developed a custom tool we
call MFS (Multidimensional Fault Simulator) that relies on dynamic binary instrumentation
and analysis. Since the attack happens on program counters and registers, which are invisible
to high-level code, such as C/C++, it is not possible to do a static analysis of the source
code. We put together a set of rules that enables us to collect, filter, and pinpoint the
potential LeapFrog gadgets. The overall design is shown in Figure 3.9.

@ First, MFS collects the instruction traces, specifically, the address of instructions

53

Correct trace

Filtered Results

addrg -> addryegt

addr0: call inst
addri: ...
addr2: ..

addrgr -> addr gegt | + |
Result: [
addr2g; -> addr2geg; | 1\
Result: ...

. A ;
--- S i-b’-}—timeout—)}(:
Vo 1/ '

R
incorrect trace

! | SIGCONT SIGS:TOP
: Check
Iproci

Hamming Distances

i P addr0: call inst
i addri: ...
addr2: ..

not

addr1, addr2, HD=1 J

Figure 3.9: LeapFrog gadget detection using MF'S framework

executed, for different inputs. For the purpose of detecting the gadgets that cause security
exploits, MFS chooses critical input pairs that cause differences in the program’s control
flow. Such inputs can be correct /incorrect private key pairs or passphrases for authentication
programs. Together with the instruction addresses, we collect the execution time of each
function executed. Since the return addresses of the functions with larger execution times
will stay in the memory for a longer duration, they are potentially more viable targets.

® MES then computes the difference between two instruction traces to find the in-
struction addresses that are executed with correct input(s) but not executed with incorrect
input(s). Note that this is an optional step to reduce the complexity of the following steps,
and it comes with a cost of false negatives. Moreover, depending on the program and type
of exploit, it may not always be possible to get multiple different traces; see §3.9.2.2. Alter-
natively, the whole instruction trace can be considered instead of only the difference.

© MFS then looks for address pairs that hold the following conditions:

dH(addrzxew addrgeturn) =1 (37)
where addri__is the address of the i instruction that is executed, addr’ is the return

exec return

addresses of the j* call instruction, and dj is the Hamming distance between two addresses.
i and j are bounded by the number of all instructions executed (n) and the number of call

instructions executed (m), respectively. Although this operation has O(m™) complexity, it

o4

can be implemented with bitwise xor and can be parallelized using multiple processor cores.
The condition given in Equation equation 3.7 is determined by the Rowhammer fault model.
Since multiple-bit flips on a precise target are much rarer and harder to control, MFS assumes
we can only flip a single bit. Yet, the method is generic enough to cover other potential fault
models, such as optical fault injection, where multiple-bit flips are more likely [25]. This
step generates a list of pairs of addresses in the following format: {< addr®..,addrk, ., >}

where addr®,, is the k' instruction address that MFS targets in the binary’s execution with
the input that we want to affect the control flow of, such as an incorrect private key, and
addrk_ . is the corrupted instruction address after fault injection.

O For each address pair we get from the list generated in the previous step, MFS starts
a simulation session. MFS executes the binary again with the incorrect input and simulate
a bit flip on the instruction address addrs,. to make it addrg.s. It is possible that certain
instructions are executed multiple times in a single execution. To correctly cover that case
in our fault model, we keep a counter variable for a specific instruction that increments every
time the binary executes the same instruction. In a single execution of the original binary,
if an instruction is executed N times, we attempt the fault simulation N + 1 times, until we
no longer see the same instruction in the trace.

@ After the bit flip simulation, MFS continues the execution of the binary without
further faults and observe the new behavior. The analysis of the new behavior is not a
trivial task. There are several options where we can observe changes compared to the original
execution. For instance, we can observe changes in the total number of executed instructions,
the number of instructions that match with the correct input execution trace, the return
code of the program, outputs to standard streams, ports that are accessed, functions calls,
authentication result, etc. The choice of observable depends on the program under test.
In this work, MFS uses the return codes, standard outputs/errors, and authentications on

different case studies.

%)

3.9.1 Tool Implementation

We used Intel’s dynamic binary instrumentation framework, Pin, which allow for process
analysis without altering its core behavior [128] to implement @ and @ of MFS. Using
Pin also makes it possible to find LeapFrog gadgets in binaries that do not have a source
code since it does not require recompiling. In the context of MFS, Pin’s capabilities are
harnessed to monitor the execution trace of a binary. This integration allows for a thorough
analysis of potential LeapFrog gadgets by observing how changes in PC values influence
program behavior. For each executed instruction, our tool outputs the virtual address of the
instruction and disassembly of the machine code. If the instruction is a call instruction it
also outputs the return address of the call, which is usually the PC value that is pushed onto
the stack before executing the called routine. For every write to STDOUT and STDERR,
the tool forwards a copy of the buffer to a text file for further analysis. To avoid the effect
of overhead caused by instruction-based instrumentation, function timings are collected in a
separate session on every function entry and exit.

@ is a simple comparison operation on the correct and incorrect execution traces imple-
mented with diff command line tool in Linux.

@© is implemented in Python. MFS parses the instruction traces and computes the Ham-
ming distance between the return addresses and instruction addresses of all executed instruc-
tions in the correct trace or the list of addresses we get from @. The Hamming distances
are calculated using the native bit_count function in Python followed by bitwise xor in
numpy library. The operation is parallelized on multiple cores to speed up the analysis.

The bit flip simulation part of MFS (@) is done using Pin which takes the address pairs
and simulates every fault independently. The faults on PC values are implemented as direct
jumps to the corrupted addresses by adding jmp addrgs after function returns. Since we
add a direct jump to the target address by injecting a line of assembly with the the Pin tool,
it is functionally equivalent to corrupting the PC value in memory.

@ filters the simulation results depending on the program and targeted exploit type. For

56

different types of exploits, we can filter by return code or value in STDOUT.

3.9.2 Experiments

Experiment Setup The experiments are conducted on a system with Ubuntu 22.04.2
LTS with 6.2.0-37-generic Linux kernel installed. The system uses an Intel Core i9-9900K
CPU with a Coffee Lake microarchitecture. We used a dynamic clock frequency rather
than a static clock frequency to improve the practicality of the attack. End-to-end attack
experiments are done on a single DIMM Corsair DDR4 DRAM chip with part number
CMU64GX4M4C3200C16 and 16GB capacity. DRAM row refresh period is kept at 64ms,
which is the default value in most systems. In all the experiments, we used 100s simulation
timeout, since the fault simulations rarely cause infinite loops. We empirically observe that
using the Python signals library, the target process could complete 34M cycles before the
attacker can stop it, with a standard deviation of 2.7M cycles. Alternatively using a bash
script, the victim process can only complete 18M cycles before it is stopped, with a standard
deviation of 0.3M cycles. There is an order of magnitude difference in precision stopping a

process with bash vs with Python.

3.9.2.1 ML Misclassification

In this section, we investigate the potential implications of instruction skipping in the ma-
chine learning domain, specifically for decision tree algorithms. A decision tree is an ML
model used to make predictions based on a series of binary choices, effectively splitting data
into increasingly specific groups. It starts with a single node, which branches into possible
outcomes based on the features of the data. Each branch represents a decision pathway, and
each node in the pathway represents a test on a specific attribute. This process continues
until a leaf node is reached, which provides the predicted outcome. They are widely used
in various applications, from financial forecasting [123] to medical diagnosis [192] due to

their interpretability, and efficiency for a variety of tasks such as classification, and feature

57

importance ranking. We choose a decision tree for proof of concept yet instruction skipping
attacks can be effective in every kind of model implementation.

Classification algorithms may be vulnerable to the LeapFrog attack under the threat
model that an attacker is co-located on the server with the victim process running the
model, and the attacker would like to force a particular output. If the attacker faults
the victim process program counter and forces a jump in the code, the result may be a
misclassification or a forced classification of a particular output. This attack is different
from other Rowhammer attacks on machine learning models [207] because for this attack we
do not need to know the model weights before hand, and we consider this a gray box model.

In this experiment, we use a public implementation [157] as our target. We simulate
program counter flips and observe the effects on the model output. We follow a similar
procedure to previous examples, where we experiment with a hammering distance of 1, 2,
and 3 and determine the number of successful LeapFrog gadgets with each of these distances.
In Table 3.4, we can see various number of LeapFrog candidate gadgets that might result in
a misclassification. After simulating these gadgets, we found 23 of the 1363 potential gadgets
within 1 hammer distance would result in a misclassification.

Table 3.4: Number of gadget candidates found in decision tree algorithm with different
Hamming distances.

Target Size | #Inst.exee | dgp | # Candidates
® on ‘ @ off
1 N/A | 1363

Decision Tree | 99KB 38417

[\)

N/A | 8667
3 | NJA | 32326

3.9.2.2 Crypto Libraries

OpenSSL Encryption Bypass We analyze openssl command line tool that uses OpenSSL
v1.1.1w for block cipher and stream cipher implementations. For each cipher, we give a sim-

ple plaintext that contains the helloworld string and run encryption without salt with a

58

Table 3.5: Number of gadget candidates found by MFS on OpenSSL for fault models with
different hamming distances. We ran OpenSSL with aria-128-cbc cipher.

Target Size #Inst.exee | dgp | # Candidates

® on ‘ @ off
1 N/A | 2700
OpenSSL | 818KB 49431 2 N/A | 20208

3 | NJA | 70475

simple passphrase. Our aim is to find LeapFrog gadgets in the binary that can be exploited
for bypassing encryption steps in the ciphers, revealing the plaintext.

First, we scan the binary using MFS as described in §3.9. Since we do not aim for any
authentication bypass in this scenario, and the execution traces are deterministic for fixed
inputs, step @ is not applicable. Instead, in step @, we compare the return addresses in a
single trace against all the instruction addresses in the same trace to look for targets with
dgp = 1. The results for aria-128-cbc summarized in Table 3.5.

We scanned the binary with 135 different ciphers available in OpenSSL. Most of the time
the binary was not affected by the simulated bit flip and correctly produced the ciphertext.

Fig. 3.12 illustrates one of the LeapFrog gadgets found in the openssl command line tool.
When we corrupt a single bit in 0x55555559c4c5, the return address of opt_cipher function,
to make it 0x556555559¢c0d5, the function returns to the corrupted return address, skipping
three instructions in between. Similarly, another single-bit corruption to (0x55555559c0c5)
causes the function to return to an earlier point in the program. We verified that both of
these bit flips cause the binary to skip the whole encryption and instead output the plaintext.
Similarly, MFS detected LeapFrog gadgets that are used in 36 ciphers including block ciphers
and stream ciphers. The ciphers with LeapFrog gadgets that revealed full or partial plaintext
are listed in Table 3.6. Fig. 3.10 and 3.11 summarize the simulation results for aes-256-ctr
and aria-256-ctr respectively.

Even with ASLR enabled, these gadgets are reproducible because ASLR does not ran-

domize the last 12 bits of the code space (the page offset). We only simulated faults in the

59

g
S 10%¢
S z

10° 3 \ < 3
“gﬁ d@& eﬂo “g$
ao® wo© o
o e
Figure 3.10: aes-256-ctr simulation results

104§

Counts
H
o
o N
/r _
(' _
|

Figure 3.11: aria-256-ctr simulation results. Plaintext helloworld is revealed three
times.

last 12 bits (which should be the same across all x86 machines the process is compiled for),

thus, the LeapFrog gadgets should work across machines without the need for rescanning.

Post-Quantum Cryptography Schemes We use Open Quantum Safe (1ibogs version
0.11.1-dev) library [194], an open source library for PQC algorithms, to find LeapFrog gad-
gets on FIPS standards using MF'S tool.

One of the algorithms selected by NIST for standardization is CRYSTALS-Dilithium,
which serves as a digital signature scheme providing post-quantum security guarantees.
Dilithium relies on the hardness of structured lattice problems, such as the Learning With
Errors (LWE) problem, which is believed to be intractable for quantum computers. Another

prominent algorithm is FALCON, which offers smaller key sizes and signatures by employing

60

Table 3.6: 36 ciphers implemented in OpenSSL that are vulnerable to LeapFrog attack.
Each given cipher reveals the plaintext fully or partially in the ciphertext due to skipped
encryption steps.

Recovered ‘ Cipher

helloworld aria-128-cbce, aria-128-cfb,aria-128-cfb1

aria-128-cfb8, aria-128-ctr, aria-128-ofb
arial92, aria-192-cbce, aria-192-ctb

aria-192-cfbl, aria-192-cfb8, aria-192-ctr
aria-192-ofb, aria256, aria-256-cbc

aria-256-cfb, aria-256-cfb1, aria-256-cfb8
aria-256-ctr, aria-256-ofb, bf-ofb

rc2-ofb, rcd, rcd-40

hellowor... ‘ bf-cfb, rc2-ctb

hdlmowor... ‘ idea-cfb, idea-ofb

oworhell... ‘ bf, bf-cbe, bf-ecb, blowfish
Tri#fa?gy?. .. ‘ chacha20, des-ede3-ofb, des-ede-ofb, des-ofb

:
ienc_main>:

' @x55555559¢0c@: call <opt_next>

| Ox55555559cec5: test %eax,%eax

0x55555559¢c0c7: Jje <enc_main+0x1la0>
0x55555559¢c0c9: cmp $0x1d, %eax
0x55555559c0cc: g <enc_main+0x178>

0x55555559¢c4b0: call <opt_unknown>
0x55555559¢4b5: 1lea 0x90(%rsp),%rsi
Ox55555559c4bd: mov %rax,%rdi
0x55555559¢c4c0: call <opt_cipher>

| exsssssssocAcs: test Keaxdeax F

0x55555559¢c4c7: je 483a8 <enc_main+0x438> ;
' @x55555559c4cd: mov 0x90(%rsp),%rbp Lﬂ

0x55555559c4da: nopw @x0(%rax,%rax,1)
0x55555559c4e0: mov 0x84(%rsp),%rad

Figure 3.12: LeapFrog gadget in OpenSSL command line tool resulting in encryption
bypass in aria-128-cbc block cipher. The PC value that fault is injected into, addrs,., is
highlighted in blue. The new value after the fault injected,addr ., is highlighted in red.

The fault is injected during the execution of the function call highlighted in green.

61

the NTRU lattice, making it a competitive choice for constrained environments. Our anal-
ysis of these algorithms reveals that, despite their robust design against quantum attacks,
they still exhibit vulnerabilities at the implementation level, susceptible to hardware fault
injections like the LeapFrog used in Rowhammer-based exploits.

In digital signature schemes, we find gadgets that produce several failure modes in the
Open Quantum Safe Library. The most critical error is a bypass of the signature verification.
Note, that while we experimented with Post-Quantum encryption schemes, theoretically
LeapFrog gadgets should work on classical encryption schemes as well.

The “Magic Number Mismatch” column in Table 3.7 highlights instances where the in-
jected fault corrupts memory regions containing predefined magic numbers used for integrity
checks. This mismatch signifies unintended memory corruption caused by the LeapFrog gad-
get, which can lead to unpredictable behavior or system crashes. According to Table 3.7,
all signature schemes also contain gadgets for this failure mode, with Dilithium 3 containing
the most number of LeapFrog gadgets.

Failures during key generation (“Key Gen. Fail”), signature generation (“Sig. Gen.
Fail”), and signature verification (“Sig. Verif. Fail”) were also identified. Such failures
can be exploited to disrupt normal cryptographic operations, resulting in denial-of-service
(DoS) attacks or weakening cryptographic strength by producing invalid or insecure keys
and signatures. All schemes contain this type of gadget.

The “Incorrect Verification” column denotes scenarios where invalid signatures are er-
roneously accepted as valid. This occurs when a LeapFrog gadget alters the control flow
of the verification routine, enabling attackers to perform impersonation attacks by forging
signatures that bypass standard validation checks.

Lastly, the “Verification Bypass” column in Table 3.7 highlights instances where the sig-
nature verification routine can be entirely circumvented using LeapFrog gadgets.This allows
an attacker to craft an invalid signature and have it accepted as valid at the client’s end.

By flipping bits in the Program Counter (PC) values using the LeapFrog within the client’s

62

memory space, the attacker effectively bypasses the signature verification routine. This vul-
nerability poses a significant security risk by enabling impersonation attacks and facilitating
unauthorized access or actions within the system. Notably, Dilithium3 exhibits the high-
est number of LeapFrog gadgets for this threat, indicating a greater susceptibility to such

attacks. An example of such a LeapFrog gadget in Dilithium is seen in Figure 3.13.

63

8 é 60T ¥ i 6 €001 PCOvy peouereq-8gT-dpsi-sso1d
L g 86 9 g 8 9568 8GLZY S99C-CVHS-+SONIHAS
8 g 76 ¥ g 8 ess LEVTY]9SC-CVHS-+SONIHAS
9 v 60T 01 € L 7818 Geeey ST6I-CVHS-+SONIHAS
L g €1l 6 € L 0978 evIey JZ61-CVHS-+SONIHAS
L g 601 8 € 8 zg08 6LELE SSTI-TVHS-+SONIHAS
6 9 eIt ¢ € 8 cg08 601L¢ JSTZI-CTVHS-+SONIHAS
8 g LT ¥ g 6 0288 RECET PA-PH-VSA-TIN
g I 1T I € 0 9TILT 899¢¥ Pr-VSA-TIN
T € Ve g i 9 8299 coevy G-OAVIN
9 8 ge ¥ g 8 9669 £789¥ ¢-OAVIN
8 e 48 G v 8 7869 £egey T-OAVIN
8 8 ee ¥ g 8 7369 cveey T-OAVIN
6 e v 61 9 8 9576 8CT19 PZ01-popped-uooreq
9 ¢ 8% ¢ 6 8 96¢6 81909 ¢1G-popped-uoore]
L ¢ 0F 4 8 8 09¢6 76,09 PgOT-10oe]
91 ¥ 90T 0S 91 81 7981 L7909 g1G-uoore
€1 v GGe il 8 4 16681 LTV QUYL
0% 0T 759 e 9 9¢ 0104 0082¥ gumnIIq
8 G 768 T ¢ 8T TLVLT VLVEY gumIyI
ssedAg ~ JLIOA red red red YorewisI]Nl s793peDn) ysup # oweYPS

JIIBA 3091100U] “JIIBA ‘SIS ‘uUdr) "SI ‘Uar) Aoy ‘wnp OISR\ 9epIipue)

"S108PeS 0JRPIPURD PUR SUOIINIOXD A[(UIOSSE JO IOUINU [R)0) 9} [[IIM SUO[R ‘QUWIOYDS dINJRUSIS [RISIP
oes 10J suoljersdo 9InjeuSis SULINP PAIdJUNOIUD SONSSI SNOLIRA SUIMOUS ‘ATRI(I] SbOQTT o) UO SURDIS WOIJ SINSIY :)°¢ 9[qe],

64

E(OQS_randombytes_system>:
0x5555555586el: mov %rl2,%rdi
Ox5555555586e4: mov %rax,%rbp

0x5555555586e7 callq <fread@plt>
©x5555555586ec: cmp %rax, %rbx

Figure 3.13: LeapFrog gadget detected in 1ibogs binary for Dilithium PQC Digital
Signature Scheme. The PC value that fault is injected into, addrg,.., is highlighted in blue.
The new value after the fault injected, addrg.s:, is highlighted in red. The fault is injected

during the execution of the function call highlighted in green.

We find LeapFrog gadgets on FIPS 204 standard, also on other PQC digital signatures
schemes, FALCON [58], MAYO [21], and CROSS [17].

Table 3.7 summarizes LeapFrog gadgets found in the libogs library for different PQC
digital signature schemes. Compared to Dilithium, ML-DSA, the implementation of the FIPS
204 standard, had fewer LeapFrog gadgets, suggesting that its implementation might be more
resilient to the specific fault attacks we conducted. However, this does not imply immunity,
as the gadgets found were still capable of bypassing critical functions. The relatively lower
number of vulnerabilities in ML-DSA could also be attributed to its simpler structure, which
reduces the surface area for potential control flow subversion attacks.

We also evaluated SPHINCS+, a hash-based signature scheme standardized in FIPS 205.
SPHINCS+ offers a different security foundation, relying on the hardness of hash-based
constructions rather than lattice problems. While this scheme is robust against certain
classes of attacks, our analysis uncovered several LeapFrog gadgets capable of bypassing
signature verification. This suggests that even though the algorithm itself is designed to
withstand quantum and classical cryptanalytic attacks, practical vulnerabilities arise due
to implementation flaws that allow Rowhammer-based attacks to alter execution paths.
Interestingly, the number of LeapFrog gadgets identified in SPHINCS+ varied significantly
based on its parameter set, with some configurations being more resilient than others. This

highlights the importance of parameter selection in mitigating the risk of physical attacks.

65

SPHINCS+ has more gadgets compared to the FALCON-1024 configuration, but in some
configurations, it has fewer gadgets than FALCON-512, another selected algorithm that is not
standardized. Overall, our findings indicate that there are generally more LeapFrog gadgets
that enable bypassing signature verification compared to those that can falsely verify an
invalid signature, indicating higher feasibility for DoS attacks with lower security impact

compared to impersonation attacks.

3.10 Conclusion

We analyzed the viability of a real-world DNN backdoor injection attack. Our backdoor
attack scenario applies to deployed models by flipping a few bits in memory assisted by the
Rowhammer. Our initial analysis performed on hardware showed that earlier proposals fall
short in assuming a realistic fault injection model. We devised a new backdoor injection
attack method that adopts a combination of trigger pattern generation and sparse and uni-
form weight optimization. In contrast to earlier proposals, our technique uses all layers and
combines trigger pattern generation, target neuron selection, and fine-tuning model param-
eter weights in the same training loop. Since our approach targets the weight parameters
uniformly, it is guaranteed that no more than one bit in a memory page is flipped. Further,
we introduced new metrics to capture a realistic fault injection model. This new approach
achieves a viable solution to target real-life deployments: on CIFAR10 (ResNet 18, 20, 32
models) and ImageNet (Resnet34 and 50 models) on real hardware by running the Rowham-
mer attack achieving Test Accuracy and Attack Success Rates as high as 92.95% and 95.26%,
respectively. We also showed that our attack works on other architectures, such as VGG11
and VGG16. Finally, we evaluated the prominent defense techniques against our backdoor
injection attack. We concluded that the proposed countermeasures are either not effective

or introduce significant overhead in terms of time and storage.

66

Chapter 4

Scalable Generation and Detection of

Spectre (Gadgets

4.1 Motivation

The new era of microarchitectural attacks began with newly discovered Spectre [105] and
Meltdown [119] attacks, which may be exploited to exfiltrate confidential information through
microarchitectural channels during speculative and out-of-order executions. The Spectre at-
tacks target vulnerable code patterns called gadgets, which leak information during specu-
latively executed instructions. While the initial variants of Spectre [105] exploit conditional
and indirect branches, Koruyeh et al. [107] propose another Spectre variant by poisoning
the entries in Return-Stack-Buffers (RSBs). Moreover, new Spectre-type attacks [36, 107]
are implemented against the SGX environment and even remotely over the network [189].
These attacks show the applicability of Spectre attacks in the wild.

Unfortunately, chip vendors try to patch the leakages one-by-one with microcode updates
rather than fixing the flaws by changing their hardware designs. Therefore, developers rely
on automated malware analysis tools to eliminate mistakenly placed Spectre gadgets in

their programs. The proposed detection tools mostly implement taint analysis [224] and

67

symbolic execution [72,222] to identify potential gadgets in benign applications. However,
the methods proposed so far are associated with two shortcomings: (1) the low number of
Spectre gadgets prevents the comprehensive evaluation of the tools, (2) time consumption
exponentially increases when the binary files become larger. Thus, there is a need for a
robust and fast analysis tool that can automatically discover potential Spectre gadgets in
large-scale commercial software.

Natural Language Processing (NLP) techniques are applied to automate challenging nat-
ural language and text processing tasks [172]. Later, NLP techniques have been used in
the security domain, such as network traffic [173] and vulnerability analysis [180]. Such ap-
plications leverage word [140] or paragraph [113] embedding techniques to learn the vector
representations of the text. The success of these techniques heavily depends on the large
data sets, which ease training scalable and robust NLP models. However, for Spectre, for
instance, the number of available gadgets is only 15, making it crucial to create new Spectre
gadgets before building an NLP-based detection tool.

Generative Adversarial Networks (GANs) [65] are a type of generative models, which aim
to produce new examples by learning the distribution of training instances in an adversarial
setting. Since adversarial learning makes GANs more robust and applicable in real-world
scenarios, GANs have become quite popular in recent years with applications ranging from
generating images [156,228] to text-to-image translation [181], etc. While the early appli-
cations of GANs focused on computer vision, implementing the same techniques in NLP
tasks poses a challenge due to the lack of continuous space in the text. Various mathe-
matical GAN-based techniques have been proposed to achieve better success in generating
human-like sentences to overcome this obstacle [56,74]. However, it is still unclear whether
GANSs can be implemented in the context of computer security to create application-specific
code snippets. Additionally, each computer language has a different structure, semantics,
and other features that make it more difficult to generate meaningful snippets for a specific

application.

68

Neural vector embeddings [113,140] used to obtain the vector representations of words
have proven extremely useful in NLP applications. Such embedding techniques also enable
one to perform vector operations in high dimensional space while preserving the meaningful
relations between similar words. Typically, supervised techniques apply word embedding
tools as an initial step to obtain the vector embedding of each token and then build a su-
pervised model on top. For instance, BERT [51] was proposed by the Google Al team,
which learns the relations between different words in a sentence by applying a self-attention
mechanism [220]. BERT has exhibited superior performance compared to previous tech-
niques [139,196] when combined with bi-directional learning. Furthermore, the attention
mechanism improves GPU utilization while learning long sequences more efficiently. Re-
cently, BERT-like architectures are shown to be capable of modeling high-level program-
ming languages [57,111]. However, it is still unclear whether it will be effective to model
a low-level programming language, such as Assembly language, and help build more robust
malware detection tools, which is the goal of this work.

Our Contributions Our contributions are twofold. First, we increase the diversity of
Spectre gadgets with the mutational fuzzing technique. We start with 15 examples [104]
and produce 1 million gadgets by introducing various instructions and operands to the ex-
isting gadgets. Then, we propose a GAN-based tool, namely, SpectreGAN, which learns the
distribution of 1 million Spectre gadgets to generate new gadgets with high accuracy. The
generated gadgets are evaluated from both semantic and microarchitectural aspects to verify
their diversity and quality. Furthermore, we introduce novel gadgets that are not detected
by state-of-the-art detection tools.

In the second part, we introduce FastSpec, a high dimensional neural embedding based
detection technique derived from BERT, to obtain a highly accurate and fast classifier for
Spectre gadgets. We train FastSpec with generated gadgets and achieve a 0.998 Area Under
the Curve (AUC) score for OpenSSL libraries in the test phase. Further, we apply FastSpec

on Phoronix benchmark tests to show that FastSpec outperforms taint analysis-based and

69

symbolic execution-based detection tools as well as significantly decreases the analysis time.

In summary,

e We extend 15 base Spectre examples to 1 million gadgets by applying a mutational fuzzing
technique,

e We propose SpectreGAN which leverages conditional GANSs to create new Spectre gadgets
by learning the distribution of existing Spectre gadgets in a scalable way,

e We show that both mutational fuzzing and SpectreGAN create diverse and novel gadgets
which are not detected by 007 and Spectector tools,

o We introduce FastSpec, which is based on supervised neural word embeddings to identify
the potential gadgets in benign applications orders of magnitude faster than rule-based

methods.

4.2 Related Works

4.2.1 Spectre attacks and detectors

Spectre Variations and Covert Channels In the first Spectre study [105], two variants
were introduced. While Spectre-V1 exploits the conditional branch prediction mechanism
when a bound check is present, Spectre-V2 manipulates the indirect branch predictions to
leak the secret. Next, researchers discovered new variants of Spectre-based attacks. For in-
stance, a variant of Spectre focuses on poisoning Return-Stack-Buffer (RSB) entries with the
desired malicious return addresses [107,131]. Another variant of Spectre called Speculative
Store Bypass [82] takes advantage of the memory disambiguator’s prediction to create leak-
age. Traditionally, secrets are leaked through cache timing differences. Then, researchers
showed that there are also other covert channels to measure the time difference: namely
using network latency [189], port contention [22], or control flow hijack attack based on

return-oriented programming [133] to leak secret data.

70

Defenses against Spectre There are various detection methods for speculative exe-
cution attacks. Taint analysis is used in 007 [224] software tool to detect leakages. As an
alternative way, the taint analysis is implemented in the hardware context to stop the spec-
ulative execution for secret dependent data [188,245]. The second method relies on symbolic
execution analysis. Spectector [72] symbolically executes the programs where the conditional
branches are treated as mispredicted. Furthermore, SpecuSym [76] and KleeSpectre [222]
aim to model cache usage with symbolic execution to detect speculative interference, which
is based on Klee symbolic execution engine. Following a different approach, Speculator [132]
collects performance counter values to detect mispredicted branches and speculative exe-
cution domain. Finally, Specfuzz [159] leverages a fuzzing strategy to test functions with
diverse set of inputs. Then, the tool analyzes the control flow paths and determines the most

likely vulnerable code snippets against speculative execution attacks.

4.2.2 Binary Analysis with Embedding

Binary analysis is one of the methods to analyze the security of a program. The analysis can
be performed dynamically [150] by observing the binary code running in the system. Alter-
natively, the binary can also be analyzed statically [193]. NLP techniques have been applied
to binary analysis in recent years. Mostly, the studies leverage the aforementioned techniques
to embed Assembly instructions and registers into a vector space. The most common usage
of NLP in the binary analysis is to find the similarities between files. Asm2Vec [52] leverages
a modified version of the PV-DM model to solve the obfuscation and optimization issues in
a clone search. Zuo et al. [249] and Redmond et al. [180] solve the binary similarity problem
by NLP techniques when the same file is compiled in different architectures. SAFE [135]
proposes a combination of skip-gram and RNN self-attention models to learn the embeddings

of the functions from binary files to find the similarities.

71

4.2.3 GAN-based Text Generation

The first applications of GANs were mostly applied to computer vision to create new images
such as human faces [97,98], photo blending [233], video generation [221], and so on. However,
text generation is a more challenging task since it is more difficult to evaluate the performance
of the outputs. An application [117] of GANs is in the dialogue generation, where adversarial
learning and reinforcement are applied together. SeqGAN [246] introduces gradient policy
update with Monte Carlo search. LeakGAN [75] implements a modified policy gradient
method to increase the usage of word-based features in adversarial learning. RelGAN [154]
applies Gumbel-Softmax relaxation for training GANs as an alternative method to gradient
policy update. SentiGAN [226] proposes multiple generators to focus on several sentiment
labels with one multi-class generator. However, to the best of our knowledge, the literature
lacks GANs applied to the Assembly code generation. To fill this literature gap, we propose

SpectreGAN in Section 4.3.2.

4.3 SpectreGAN: Spectre Gadget Generation

We propose both mutational fuzzing and GAN-based gadget generation techniques to create
novel and diverse gadgets. In the following sections, details of both techniques and the

diversity analysis of the gadgets are given:

4.3.1 Gadget Generation via Fuzzing

We begin with fuzzing techniques to extend the base gadgets to create an extensive data set

consists of a million Spectre gadgets in four steps.

e Step 1: Initial Data Set There are 15 Spectre-V1 gadgets written in C by Kocher [104]
and two modified examples introduced by Spectector [72]. For each example, a different

attacker code is written to leak the entire secret data completely in a reasonable time.

72

Algorithm 2: Gadget generation using mutational fuzzing
Input: An Assembly function A, a set of instructions I, and sets of registers R; for
different sizes of b
Output: A mutated Assembly function A’
1 G:= Rb — Hb
2 A=A
3 MazOffset = length(A)
4 for 1:Diversity do

5 for Offset=1:MazOffset do
6 for 1:0ffset do
7 iy < random(I)
8 1y < random(Ry|G)
9 < random(0 : length(A"))
10 Insert({ip|rp}, A’,1)
11 end
12 Test boundary check(A")
13 Test Spectre leakage(A”)
14 end
15 end

e Step 2: Compiler variants and optimization levels Since our target data set is in
assembly code format, each Spectre gadget written in C is compiled into x86 assembly
functions using different compilers. We compiled each example with GCC, clang, and icc
compilers using -00 and -02 optimization flags. Therefore, we obtain 6 different assembly

functions from each C function with AT&T syntax.

e Step 3: Mutational fuzzing based generation

We generated new samples with an approach inspired by mutation-based fuzzing tech-
nique [197] as introduced in Algorithm 2. Our mutation operator is the insertion of random
assembly instructions with random operands. For an assembly function A with length L,
we create a mutated assembly function A’. We set a limit on the number of generated
samples per assembly function A for each Offset value, denoted as Diversity. We choose a
random instruction g from the instruction set I, and depending on the instruction format of
1p; we choose random operands 73, which are compatible with the instruction in terms of bit
size, b. After proper instruction-operand selection, we choose a random position [in A" and

insert {4} into that location. We repeat the insertion process until we reach the Offset

73

value. The randomly inserted instruction and register list are given in Appendix A.2.

Step 4: Verification of the generated gadgets

Finally, A is tested whether it is still a Spectre-V1 gadget or not. There are two verification

tests that are applied to the generated functions.

The first verification test is applied to make sure that the function still has the proper array
boundary-check for given user inputs. Since random instructions are inserted in random
locations in the gadget, a new instruction may alter the flags whose value is checked by the
original conditional jump. Once the flags are broken, the secret may be leaked without any
speculative execution. To test this case, the PoC Spectre-V1 attacker code [105] is modified
to supply only out-of-bounds inputs to A’, which prevents mistraining the branch predictor.
If the secret bytes in the PoC code are still leaked, we conclude that the candidate gadget

is broken and exclude it from the pool.

If a generated function A’ passes from the first test, we apply the PoC Spectre-V1 attack
to the gadget and exclude it if it does not leak the secret data through speculative execu-
tion. Additionally, the verification code is modified based on Kocher’s examples since each
example gadget leaks the secret in a different way. For instance, 4 example shifts the
user input by 1, which affects the leakage mapping in the cache. Therefore, we modified
the PoC code to compile it with the generated gadgets together to leak the whole secret.
This process is repeated for each example in Kocher’s gadget dataset [104], which yields
16 different verification codes. The secret in the gadgets is only decoded via implementing
the Flush+Reload technique. Other microarchitectural side-channels are not in the scope

of the verification phase.

Other Spectre variants such as SmotherSpectre [22] and NetSpectre [189] are not in our
scope. Hence, the generated gadgets that potentially include SmotherSpectre and NetSpec-
tre variants are not verified with other side-channel attacks. Our verification procedure only

guarantees that the extracted gadgets leak secret information through cache side-channel

74

attacks. The verification method can be adjusted to other Spectre variants, which is ex-

plained further in Section 4.5.

At the end of the fuzzing-based generation, we obtained a data set of almost 1.1 million
Spectre gadgets!. The overall success rate of the fuzzing technique is 5% out of compiled

gadgets. The generated gadgets are used to train SpectreGAN in the next section.

4.3.2 SpectreGAN: Assembly Code Generation with GANs

We introduce SpectreGAN, which learns the fuzzing generated gadgets in an unsupervised
way and generates new Spectre-V1 variants from existing assembly language samples. The
purpose of SpectreGAN is to develop an intelligent way of creating assembly functions instead
of randomly inserting instructions and operands. Hence, the low success rate of gadget
generation in the fuzzing technique can be improved further with GANs. To the best of our
knowledge, the literature lacks GANs applied to the assembly code generation. To fill this
literature gap, we propose SpectreGAN in Section 4.3.2.

We build SpectreGAN based on the MaskGAN model, with 1.1 million examples gener-
ated in Section 4.3. Since MaskGAN is originally designed for text generation, we modify
the MaskGAN architecture to train SpectreGAN on assembly language. Finally, we evaluate

the performance of SpectreGAN and discuss challenges in assembly code generation.

4.3.2.1 SpectreGAN Architecture

SpectreGAN has a generator model that learns and generates x86 assembly functions and a
discriminator model that gives feedback to the generator model by classifying the generated
samples as real or fake as depicted in Figure 4.1.

Generator The generator model consists of encoder-decoder architecture (seq2seq) [196]

which is composed of two-layer stacked LSTM units. Firstly, the input assembly functions are

IThe attacker codes for each example, the entire data set, SpectreGAN, and FastSpec code are available
at https://github.com/vernamlab/FastSpec

5

https://github.com/vernamlab/FastSpec

hrbp Ty 1~ Ty ~ Tiy1~ ATDP movb
Input Gadget Geé?,r,aﬁ?? ,, + \,wa\,q ,,,,,,,, +—

77 e e e ey e e B

p 1 2 3 1 5 6 1 2 ; 7] 5 6
pushq A,I'bp K 69 e eg e {iG e {ig e (;‘g e (;'g -------- > dg — dg d1G dg d:G — dp
movq f’rép : {“rbp pushq %rbp <MASK><MASK><MASK> %rbp pushg %rbp b7, “-a; T %rbp
movb %sil , %al Discriminator 7

movq %rdi , -8 (%rbp)
movb %al , -9 (%rbp)
movq -8 (%rbp) , ‘%rdi

i (oL (3. [, e 1 2 3 7] 5 6
ep — €p — €p — ep — €p — €} >dD—»dD—>dP—>dP—>dP—>dD
£ £ £ £

T T T * T
pushq Y%rbp <MASK><MASK><MASK> %rbp c %pshq hrbp T, T; Ty hrbp
riviq | | | |

_— s —

Figure 4.1: SpectreGAN architecture. Blue and red boxes represent the encoder and
decoder LSTM units, respectively. Green boxes represent the softmax layers. The listed
assembly function (AT&T format) on the left is fed to the models after the tokenization

process. The critic model and the decoder part of the discriminator get the same sequence
of instructions in the adversarial training.

converted to a sequence of tokens 7" = {x/, ..., 2y} where each token represents an instruc-
tion, register, parenthesis, comma, intermediate value or label. SpectreGAN is conditionally
trained with each sequence of tokens where a masking vector m = (my, ..., my) with elements
my € {0,1} is generated. The masking rate of m is determined as r,, = %Zi\il my. m(T")
is the modified sequence where x} is replaced with <MASK> token for the corresponding posi-
tions of m; = 1. Both 7" and m(7") are converted into the lists of vectors T' = {xy,...,zn}
and m(7T") by a lookup in a randomly initialized embedding matrix of size V' x H, where V'
and H are the vocabulary size and embedding vector dimension, respectively. In order to
learn the masked tokens, T' and m(T') are fed into the encoder LSTM units of the generator
model. Each encoder unit outputs a hidden state h, which is also given as an input to the
next encoder unit. The last encoder unit (¢% in Figure 4.1) produces the final hidden state
which encapsulates the information learned from all assembly tokens.

The decoder state is initialized with the encoder’s final hidden state, and the decoder
LSTM units are fed with m(7T") at each iteration. To calculate the hidden state hy of each

decoder unit, the attention mechanism output and the current state of the decoder h; are

76

combined. The attention mechanism reduces the information bottleneck between encoder
and decoder and eases the training [15] on long token sequences in assembly function data set.
The attention mechanism is implemented exactly same for both generator and discriminator
model which is illustrated in the discriminator part in Figure 4.1. The alignment score vector
a; is calculated as:
ehi hs
a;(8) = ———, 4.1

6) = S, (1)
where a; describes the weights of h;, for a token 7, at time step ¢, where h, h is the score
value between the token z; and 7’. This forces decoder to consider the relation between

each instruction, register, label and other tokens before generating a new token. The context

vector ¢, is calculated as the weighted sum of hy as follows:
cp = Z a,(s)hg. (4.2)

For a context vector, ¢;, the final attention-based hidden state, f;, is obtained by a fully

connected layer with hyperbolic tangent activation function,
hy = tanh(W,[cy; hy)), (4.3)

where [¢;; hy] is the concatenation of ¢; and h; with the trainable weights W,. The output list
of tokens T = (Z1, ..., Tn) is then generated by filling the masked positions for m(7”) where

my = 1. The probability distribution p(y|y1.+—1, ;) is calculated as,

eWJLt

=g (4.4)

p(yt|yl:t—1a It) =

where ¥, is the output token and attention-based hidden state Et is fed into the softmax
layer which is represented by the green boxes in Figure 4.1. It is important to note that

the softmax layer is modified to introduce a randomness at the output of the decoder by a

7

sampling operation. The predicted token is selected based on the probability distribution of
vocabulary, i.e. if a token has a probability of 0.3, it will be selected with a 30% chance.
This prevents the selection of the token with the highest probability every time. Hence, at
each run the predicted token would be different which increases the diversity in the generated
gadgets.

Discriminator The discriminator model has a very similar architecture to the generator
model. The encoder and decoder units in the discriminator model are again two-layer stacked
LSTM units. The embedding vectors m(7T’) of tokens m(71"), where we replace x} with <MASK>
when m, = 1, are fed into the encoder. The hidden vector encodings hs and the encoder’s
final state are given to the decoder.

The LSTM units in the decoder are initialized with the final hidden state of the encoder
and hy is given to the attention layer. The list of tokens T which represents the generated
assembly function by the generator model is fed into the decoder LSTM unit with teacher
forcing. The previous calculations for a;(s), ¢; and Eg stated in Equation 4.1, 4.2, and 4.3 are
valid for the attention layer in the discriminator model as well. The attention-based state

value 7Lt is fed through the softmax layer which outputs only one value at each time step t,

eWJzt

= eWsht’

pp (T = 2}°!|T) = (4.5)

real

which is the probability of being a real target token x}

SpectreGAN has one more model apart from the generator and the discriminator models,
which is called the critic model, and it has only one two-layer stacked LSTM unit. The critic
model is initialized with zero states and gets the same input T with the decoder. The output

of the LSTM unit at each time step t is given to the softmax layer, and we obtain

Gtht

ST (4.6)

pe(@; = 2} T) =

which is an estimated version of pp. The purpose of introducing a critic model for probability

78

estimation will be explained in Section 4.3.2.2.

4.3.2.2 Training

The training procedure consists of two main phases namely, pre-training and adversarial

training.

Pre-training phase The generator model is first trained with maximum likelihood esti-
mation. The real token sequence 7" and masked version m(7") are fed into the generator
model’s encoder. Only the real token sequence 1" is fed into the decoder using teacher forc-
ing in the pre-training. The training maximizes the log-probability of generated tokens, z;

given the real tokens, x;, where m; = 1. Therefore, the pre-training objective is

> logp(m(E)lm(+))), (4.7

where p(m(z;)|m(x})) is calculated only for the masked positions. The masked pre-training

objective ensures that the model is trained for a Cloze task [203].

Adversarial training phase The second phase is adversarial training, where the genera-
tor and the discriminator are trained with the GAN framework. Since the generator model
has a sampling operation from the probability distribution stated in Equation 4.4, the overall
GAN framework is not differentiable. We utilize the policy gradients to train the generator
model, as described in the previous works [56,246].

The reward r, for a generated token Z; is calculated as the logarithm of pp(Z; = z7¢|T).
The aim of the generator model is to maximize the total discounted rewards R; = m(Zit Yors)
for the fake samples, where v is the discount factor. Therefore, for each token, the genera-
tor is updated with the gradient in Equation 4.8 using the REINFORCE algorithm, where

by = log po(T; = x?e“lﬂ:) is the baseline rewards by the critic model. Subtracting b, from R,

79

helps reducing the variance of the gradient [56].

V@Eg[Rt] = (Rt — bt)VQ log G@(Ii‘t) (48)

To train the discriminator model, both real sequence T and fake sequence T are fed into
the discriminator. Then, the model parameters are updated such that log pp (Z;, = 27| T) is

minimized and log pp(z; = x7°*|T) is maximized using maximum log-likelihood estimation.

4.3.2.3 Tokenization and Training Parameters

Firstly, we pre-process the fuzzing generated data set to convert the assembly functions
into sequences of tokens, 7" = (z4,...,xy). We keep commas, parenthesis, immediate val-
ues, labels, instruction and register names as separate tokens. To decrease the complex-
ity, we reduce the tokens’ vocabulary size and simplify the labels in each function so that
the total number of different labels is minimum. The tokenization process converts the in-
struction "movq (%rax), %rdx” into the list ["movq", " (", "Yrax", ")", ",", "Yrdx"]
where each element of the list is a token z;. Hence, each token list 77 = {2, ..., @y } represents
an assembly function in the data set.

The masking vector has two different roles in the training. While a random masking
vector m = (my,...,my) is initialized for the pre-training, we generate m as a contiguous
block with a random starting position in the adversarial training. In both training phases,
the first token’s mask is always selected as m; = 0, meaning that the first token given to
the model is always real. The masking rate, r,, determines the ratio of masked tokens in an
assembly function whose effect on code generation is analyzed further in Section 4.3.2.4.

SpectreGAN is configured with the embedding vector size of d = 64, generator learning
rate of ng = 5 x 107, discriminator learning rate of np = 5 x 1073, critic learning rate of
ne = 5x 1077 and discount rate of y = 0.89 based on the MaskGAN implementation [56]. We

select the sequences with a maximum length of 250 tokens, building the vocabulary with a

80

size of V' = 419. We separate 10% of the data set for model validation. SpectreGAN is trained
with a batch size of 100 on NVIDIA GeForce GTX 1080 Ti until the validation perplexity
converges in Figure 4.2. The pre-training lasts about 50 hours, while the adversarial training

phase takes around 30 hours.

4.3.2.4 Evaluation

SpectreGAN is based on learning masked tokens with the surrounding tokens. The masking
rate is not a fixed value, which is determined based on the context. Since SpectreGAN is the
first study to train on Assembly functions, the masking rate choice is of utmost importance
to generate high-quality gadgets. Typically, NLP-based generation techniques are evaluated
with their associated perplexity score, which indicates how well the model predicts a token.
Hence, we evaluate the performance of SpectreGAN with various masking sizes and their
perplexity scores. In Figure 4.2, the perplexity converges with the increasing number of
training steps, which means the tokens are predicted with a higher accuracy towards the
end of the training. SpectreGAN achieves lower perplexity with higher masking rates, which
indicates that higher masking rates are more preferable for SpectreGAN.

Even though the higher masking rates yield lower perplexity and assembly functions of
high quality in terms of token probabilities, our purpose is to create functions which behave
as Spectre gadgets. Therefore, as a second test, we generated 100,000 gadgets for 5 different
masking rates. Next, we compiled our gadgets with the GC'C' compiler and then tested them
with all the attacker code to verify their secret leakage. When SpectreGAN is trained with
a masking rate of 0.3, the success rate of gadgets increases by up to 72%. Interestingly, the
success rate drops for other masking rates, demonstrating the importance of masking rate
choice. In total, 70,000 gadgets are generated with a masking rate of 0.3 to evaluate the
performance of SpectreGAN in terms of gadget diversity in Section 4.3.3.

To illustrate an example of the generated samples, we fed the gadget in Listing 4.1 to

SpectreGAN and generated a new gadget in Listing 4.2. We demonstrate that SpectreGAN

81

10%¢
—o0.2
0.3
2 0.4
3 TR e 05
o —0.6
g10'E E
| | | | | | |
0 0.5 1 1.5 2 25 3 35
Steps 4
80 I ep : <10
S
260+ =
[0
©
@40 :
(0]
Q
S 209 =
wn
0 ! ! Mu

0.2 0.3 0.4 0.5 0.6
Mask Rate (%)

Figure 4.2: (Above) The validation perplexity decreases at each training step and
converges for all r,,. (Below) Spectre gadget success rates are evaluated when different
masking rates are used to train SpectreGAN. Spectre gadget success rate shows the
percentage of gadgets out of compiled functions.

is capable of generating realistic assembly code snippets by inserting, removing, or replacing
the instructions, registers, and labels. In the Listing 4.2, the lines that start with the
instructions written with red color are generated by SpectreGAN, and they correspond to

the masked portion of Spectre-V1 gadget given in Listing 4.1.

82

1 . 1
> .cfi_startproc > .cfi_startproc
s movl size(%rip), %eax s movl size(%rip), %eax
¢« cmpq Yrdi,%rax r cmpq Y%rdi,%rax
5 jbe 5 jbe
¢ leaq arrayl(%rip),%rax 6 leaq arrayl(%rip),%rax
7 movzbl (%rdi,%rax),%eax 7 movzbl (%rdi,%rax),%eax
8 ror $1,%rsi 8 ror $1,%rsi
o shlq $9,%rax o shlq $9,%rax
0 leaq array2(%rip),%rcx 10 array2(%rdi),%al
11 movss %xmm8,%xmm4 11 %al,temp(%rip)
12 movb (%rax,%rcx),%al 12 :
15 andb %al,temp(%rip) 13 %113b,%al
11 movd %xmm1,%r14d 14 array2(%rax),%al
15 test Yor15,%rex 15 %al,temp(%rip)
16 sbbl %r13d,%r9d 16 sbbl %r13d,%r9d
17 : 17 .
12 retq 12 retq
19 ecmovll %r8d,%r10d 19 cmovll %r8d,%r10d
20 .cfi_endproc 20 .cfi_endproc
Listing 4.1: Input Spectre-V1 gadget Listing 4.2: Generated gac

4.3.3 Diversity and Quality Analysis of Generated Gadgets

In total, 1.2 million gadgets are generated by the mutational fuzzing technique and Spec-
treGAN. Since the gadgets are derived from existing examples, it is crucial to analyze their
diversity and quality. The diversity is measured by syntactic analysis, e.g., counting the num-
ber of unique n-grams in gadgets. For the quality metric, we monitor performance counters
while the gadgets are executed. 5000 gadgets are randomly selected from each gadget gen-
eration technique to perform syntactic and microarchitectural analysis. Furthermore, novel
gadgets that are not detected by 007 [224] and Spectector [72] tools are given to show that

our gadget generation techniques produce meaningful Spectre-V1 gadgets.

4.3.3.1 Syntactic Analysis

In NLP applications, the diversity of the generated texts is evaluated by counting the number
of unique n-grams. The most common metrics for the text diversity are perplexity and
BLEU scores that are calculated based on the probabilistic occurrences of n-grams in a

sequence. The higher number of n-grams indicates that an NLP model learns the data set

83

distribution efficiently and produces new sequences with high diversity. However, both scores
are obtained during the training phase; thus, making it impossible to evaluate the fuzzing
generated gadgets since there is no training phase. Instead, we conduct diversity analysis by
counting the unique n-grams introduced by fuzzing and SpectreGAN methods after all the
gadgets are generated.

The number of unique n-grams in generated gadgets is compared with 17 base exam-
ples in Table 4.1. The unique n-grams are calculated as follows: First, unique n-grams
produced by fuzzing are identified and stored in a list. Then, additional unique n-grams
introduced by SpectreGAN are noted. Therefore, the unique n-grams generated by Spectre-
GAN in Table 4.1 represent the number of n-grams introduced by SpectreGAN, excluding

fuzzing generated n-grams.

Table 4.1: Table shows the number of unique n-grams for base gadgets and generated
gadgets by fuzzing and SpectreGAN methods. In the last column the total number of
unique n-grams are given as well as the increase factor that improves with the increasing

n-grams.
n ‘ Base ‘ Fuzzing ‘ SpectreGAN ‘ Total
2 2069 15,448 7,462 22,910 (x11)
3 3349 181,606 91,851 273,457 (x82)
4 4161 639,608 460,317 1,099,925 (x264)
5 4747 998,279 921,519 1,919,798 (x404)

In total, the number of unique bigrams (2-grams) is increased to 22,910 from 2,069, which
is more than 10 times raise. While new instructions and registers added by fuzzing improve
the gadgets’ diversity, SpectreGAN contributes to the gadget diversity by producing unique
perturbations. Since the instruction diversity increases drastically compared to base gadgets,
the unique 5-grams reach up to almost 2 million, 400 times higher than the base gadgets.
The results show that both fuzzing and SpectreGAN span the diversity in the generated
gadgets. High diversity in the gadget data set also results in microarchitectural behavior
diversity as well as new Spectre-V1 gadgets that were not previously considered during the

design process of previous detection mechanisms.

84

100 \

4 Base
@ Fuzzing o
80 - © SpectreGAN R . o
a DD
0 c o o
o o o
S
S 60 [o o B
o
.-': a
)
@ 40 . °
Y— o o
o G
H*+ ° o DD o ©
a o
20 - 7

0
120 140 160 180 200 220 240 260 280 300
of Issued uops

Figure 4.3: The distribution of base (red-triangle), fuzzing generated (blue-square) and
SpectreGAN generated (green-circle) gadgets is given for issued and retired pops counters.
Both SpectreGAN and fuzzing techniques generate diverse set of gadgets in Haswell
architecture.

4.3.3.2 Microarchitectural Analysis

Another purpose of gadget generation is to introduce new instructions and operands to create
high-quality gadgets. To assess the quality of the gadgets, we analyze gadgets’ microarchi-
tectural characteristics. The first challenge is to examine the effects of instructions in the
transient domain since they are not visible in the architectural state. After carefully ana-
lyzing the performance counters for Haswell architecture, we determined that two counters,
namely, uops_issued : any and uops_retired : any give an insight into gadgets’ microarchi-
tectural behavior. uops_issued : any counter is incremented every time a pop is issued, which
counts both speculative and non-speculative pops. On the other hand, uops_retired : any
counter only counts the executed and committed pops, which automatically excludes spec-

ulatively executed pops.

The performance counter distribution of generated gadgets and base gadgets are given
in Figure 4.3. The gadget quality is measured by the number of instructions in the transient

domain after a gadget passes the verification step. The exploitable gadgets in the commercial

85

software have many instructions that are speculatively executed until the secret is leaked. If
our detection tool in Section 4.4 is only trained with simple gadgets from Kocher’s examples,
the success rate would be low in large-scale software binaries. Moreover, the gadgets that
are detected in the case studies are very similar to the generated gadgets which have more
instructions in the transient domain. A similar observation is also shared in [225], where
the authors claim that Spectre gadgets have up to 150 instructions between the conditional
branch and speculative memory access in the detected gadgets. Since our aim is to create
realistic gadgets by inserting various instructions, we assume that gadget quality increases
in parallel when a gadget is close to the x-axis and far from the y-axis.

It is more likely to obtain high-quality gadgets with fuzzing method as new instructions
and operands are randomly added. On the other hand, SpectreGAN learns the essential
structure of the fuzzing generated gadgets, which yields almost the same number of samples
close to the x-axis in Figure 4.3. Moreover, the advantage of SpectreGAN is to automate the

creation of gadgets with a higher accuracy (72%) compared to the fuzzing technique (5%).

4.3.3.3 Detection Analysis

Even though the microarchitectural and syntactic analyses show that fuzzing and Spectre-
GAN can produce diverse and high-quality sets of gadgets, we aim to enable a comprehensive
evaluation of detection tools and determine the most interesting gadgets in our data set. For
this reason, the generated gadgets are fed into Spectector [72] and 007 [224] tools to deter-
mine the novelty of the gadgets.

007 tool leverages taint analysis to detect Spectre-V1 gadgets. It is based on the Binary
Analysis Platform (BAP) [48] which forwards taint propagation along all possible paths after
a conditional branch is encountered. 007 ? is built on a set of hand-written rules which cover
the existing examples by Kocher [104]. Although our data set size is 1.2 million, we have

selected 100,000 samples from each gadget example uniformly random due to the immense

Zhttps://gitlab.com /igoto/spectre-detector

86

time consumption of 007 (150 hours for 100K gadgets), which achieves a 94% detection

rate.
1 victim_function(size_t x){
2 (global_condition)
3 x = 0;
(x < size)
temp &= array2[arrayl[x] * 512];
6 F

Listing 4.3: CMOV gadget: An example Spectre gadget in C format. When it is compiled
with gce-7.5 -02 optimization level, CMOVcc gadget bypasses 007 tool. The generated

assembly version is given in Appendix A.1.

Interestingly, specific gadget types from both fuzzing and SpectreGAN are not caught
by 0o7. When a gadget contains cmov or zchg or set instruction and its variants, it is
not identified as a Spectre gadget. Hence, we introduce these gadgets as novel Spectre-V1
gadgets listed in Listing 4.3 and Listing 4.4. Their corresponding assembly snippets are also

given in Appendix A.1.

1 size_t prev = Oxff;
2 victim_function(size_t x) {
(prev < size)
' temp &= array2[arrayl[prev] * 512];

prev = x;

Listing 4.4: XCHG gadget: When a past value, that is controlled by the attacker, is used to
leak the secret in the Spectre gadget, 007 cannot detect the XCHG gadget. This example

show that control-flow graph extraction is not efficiently implemented in 007 tool.

We identified two potential issues of static taint analysis method in 007 tool. First, if a
portion of a tainted variable is modified by an instruction such as cmov or set, the tainted

variable is not tracked by the tool. However, an attacker still controls the remaining portion

87

of the variable, which makes it possible to leak the secret from memory. In some cases,
the implementation of static taint analysis is not sufficiently accurate to track partially
modified tainted variables due to under-tainting. Secondly, the tainted variables are not
tracked between the iterations of a loop. If an old attacker-controlled variable is used to
access the secret, 007 tool is not able to taint the old variable between the iterations of a for
loop. Hence, any old attacker-controlled variable can be used to bypass the tool. This shows
that control flow graphs of multiple iterations may not be extracted correctly by oo7. Both
weaknesses show that hand-written rules do not generalize well for Spectre gadget detection
when new Spectre-V1 gadgets are discovered.

Spectector [72] makes use of a symbolic execution technique to detect the potential
Spectre-V1 gadgets. For each assembly file, Spectector is adjusted to track 25 symbolic
paths of at most 5000 instructions each, with a global timeout of 30 minutes. The remaining
parameters are kept as default.

First, we eliminate the gadgets that include unsupported instructions as these gadgets
are never detected by Spectector. When we analyze the remaining gadgets, 1% of the gadgets
are not detected successfully. Then, undetected gadgets are examined to determine novel
gadgets.

We determined two issues in the Spectector tool. The first issue is related to the barrier
instructions. Even though [fence, sfence and mfence instructions have different purposes, the
tool treats them as equal instructions. For instance, if an sfence instruction is present after
the conditional branch, the tool classifies the gadget as safe. However, sfence instruction
has no effect on the load operation so, the gadget still leaks the secret. Hence, Spectector’s
modeling of fences does not distinguish the differences between various x86 fence instructions.
The second issue is about 8-bit registers in which a partial information of the elements in
arrayfz/ is stored. When 8-bit registers are used to modify the elements in Listing 4.5,
Spectector is no longer able to detect the gadgets. This second issue is also mentioned

in [72], i.e., sub-registers are currently not supported by the tool. Overall, these issues are

88

due to the problems in the translation from x86 assembly into Spectector’s intermediate
language.

We show that our large-scale diverse gadget data set establishes a ground truth to evaluate
the detection tools accurately. As shown in the case studies on Spectector and oo7, the
success rate on detecting the gadgets in our 1.1 million sample data set could serve as a

generic evaluation metric while identifying the flaws in the detection tools.

2 movl size(%rip), %eax
3 cmpq Yorax, %rdi
! jae

5 movzbl arrayl(%rdi), %eax
6 shlq $9, %rax

8 movb array2(%rax), %dl
9 andb %dl, temp(%rip)

11 ret

Listing 4.5: is added to 1°* example in Kocher’s examples [104]. Spectector is
no longer able to detect the leakage due to the zeroing %al register.

4.4 FastSpec: Fast Gadget Detection Using BERT

In an assembly function representation model, the main challenge is to obtain the representa-
tion vectors, namely embedding vectors, for each token in a function. Since the skip-gram and
RNN-based training models are surpassed by the attention-only Transformer models [220]
in sentence classification tasks, we introduce FastSpec, which applies a lightweight BERT
version. Transformer models outperform skip-gram and RNN models primarily due to their
self-attention mechanism, which captures long-range dependencies and contextual relation-
ships across the entire input sequence, something traditional models struggle with. Unlike
RNNs, Transformers process input tokens in parallel, enabling faster and more efficient train-
ing on large datasets. Their attention mechanism assigns varying importance to different

words, allowing transformers to understand subtle contextual nuances that skip-gram and

89

s Pe 128-bit
MMX o Registers

Instructi
gmsmm [nstructions

Floating Point pompge
Instructions --F -
Bmmie
- a el

d_-_ .
16-bit =- i' ™ 8-bit =

Registers Registers Registers

Figure 4.4: 3-D visualization for the distribution of instructions and registers after t-SNE is
applied to embedding vectors. Similar instructions and registers have the same colors. The
unrelated instructions are separated from each other in the three-dimensional space after
the pre-training.

RNN models often overlook. Additionally, Transformers use positional embeddings to cap-
ture word order without relying on sequential processing, avoiding the vanishing gradient
issues common in RNNs. This architectural simplicity and scalability to large datasets and

parameter sizes make transformers significantly more flexible and effective.

4.4.1 Training Procedures

We adopt the same training procedures with BERT on assembly functions, namely, pre-

training and fine-tuning.

90

4.4.1.1 Pre-training

The first procedure is pre-training, which includes two unsupervised tasks. The first task
follows a similar approach to MaskGAN by masking a portion of tokens in an assembly
function. The mask positions are selected from 15% of the training sequence, and the selected
positions are masked and replaced with <MASK> token with 0.80 probability, replaced with a
random token with 0.10 probability, or kept as the same token with 0.10 probability. While
the masked tokens are predicted based on other tokens’ context, the context vectors are
obtained by the multi-head self-attention mechanism.

The second task is the next sentence prediction, where the previous sentence is given as
input. Since our assembly code data has no paragraph structure where the separate long
sequences follow each other, each assembly function is split into pieces with a maximum
token size of 50. For the next sentence prediction task, we add <CLS> to each piece. For each
piece of function, the following piece is given with the label IsNext, and a random piece of
function is given with label NotNext. FastSpec is trained with the self-supervised approach.

At the end of the pre-training procedure, each token is represented by an embedding
vector with a size of H. Since it is impossible to visualize the high dimensional embed-
ding vectors, we leverage the t-SNE algorithm [130] which maps the embedding vectors to
a three-dimensional space as shown in Figure 4.4. We illustrate that the embedding vec-
tors for similar tokens are close to each other in three-dimensional space, as this outcome
shows that the embedding vectors are learned efficiently. In Figure 4.4, the registers with
different sizes, floating-point instructions, control flow instructions, shift/rotate instructions,
set instructions, and MMX instructions/registers are accumulated in separate clusters. The
separation among different types of tokens enables achieving a higher success rate in the

Spectre gadget detection phase.

91

4.4.1.2 Fine-tuning

The second procedure is called fine-tuning, which corresponds to a supervised sequence
classification in FastSpec. This phase enables FastSpec to learn the conceptual differences
between Spectre gadgets and general-purpose functions through labeled pieces. The pieces
created for the pre-training phase are merged into a single sequence with a maximum of 250
tokens. The disassembled object files, which have more than 250 tokens, split into separate
sequences. Each sequence is represented by a single <CLS> token at the beginning. The
benign files are labeled with 0, and the gadget samples are labeled with 1 for the supervised
classification. Then, the embedding vectors of the corresponding <CLS> token and position
embedding vectors for the first position are summed up. Finally, the resulting vector is fed
into the softmax layer, which is fine-tuned with supervised training. The output probabilities

of the softmax layer are the predictions on the assembly code sequence.

4.4.2 Training Details and Evaluation

We combine the assembly data set generated in Section 4.3 and the disassembled Linux
libraries to train FastSpec. Although Linux libraries may contain Spectre-V1 gadgets, we
assume that the total number of hidden Spectre gadgets is negligible, comparing the data
set’s total size. Therefore, the model treats those gadgets as noise, which does not affect the
performance of FastSpec. In total, a data set of 107 million lines of assembly code is collected,
which consists of 370 million tokens after the pre-processing. We separate 80% of the data
set for training and validation, and the remaining 20% is used for FastSpec evaluation. While
the same pre-processing phase in Section 4.3.2.3 is implemented, we further merge similar
tokens to decrease the total vocabulary size. We replace all labels, immediate values and out-
of-vocabulary tokens with <label>, <imm> and <UNK>, respectively. After the pre-processing,
the vocabulary size is reduced to 960.

We choose the number of Transformer blocks as L = 3, the hidden size as H = 64, and

the number of self-attention heads as A = 2. We train FastSpec on NVIDIA Titan XP

92

GPU. The pre-training phase takes approximately 6 hours, with a sequence length of 50.
We further train the positional embeddings for 1 hour with a sequence length of 250. The
fine-tuning takes only 20 minutes on the pre-trained model to classify all types of samples in
the test data set correctly. Note that the training time is less than previous NLP techniques
in the literature since BERT [51] leverages GPU parallelization significantly. The analysis
duration is measured on Intel Xeon CPU E5-2637 v2 @3.50GHz.

In the evaluation of FastSpec, we obtained 1.3 million true positives and 110 false positives
(99.9% precision rate) in the test data set, demonstrating the high performance of FastSpec.
We assume that the false positives are Spectre-like gadgets in Linux libraries, which need to
be explored deeply in future work. Moreover, we only have 55 false negatives (99.9% recall
rate), which yield a 0.99 F-1 score on the test data set.

In the next section, we show that FastSpec achieves high performance and extremely
fast gadget detection without needing any GPU acceleration since FastSpec is built on a

lightweight BERT implementation.

4.4.3 Case Study: OpenSSL Analysis

We analyze FastSpec to validate with a separate ground truth data set other than the one
we generate in Section 4.3. The purpose of this analysis is to measure the effect of the
covariate shift and robustness of FastSpec against a real-world benchmark. We focus on
OpenSSL v3.0.0 libraries [168], as it is a popular general-purpose cryptography library in
commercial software. We use a subset of functions from RSA, ECDSA, and DSA ciphers in
the OpenSSL speed benchmark. The function labels are obtained by running the SpecFuzz
tool, which is a dynamic detection tool to find Spectre-V1 vulnerabilities using fuzzing [159].
The functions in which the SpecFuzz tool finds vulnerabilities are labeled as positive, and
the remaining ones are labeled as negative. We also exclude the functions without any
conditional branch instructions from the positive class and the functions that have a call to

them. In total, 4242 functions are extracted from the aforementioned cryptography libraries

93

to analyze with FastSpec. Positive and negative classes include 720 and 2500 functions,
respectively.

First, we apply the same pre-processing procedures, as explained in Section 4.4.2 to
obtain the tokens. The total number of tokens is more than 4 million. Since the labels are
assigned on function-level, we choose the maximum confidence rate that we get among all the
sliding windows. The maximum confidence rate is assigned as the prediction of our model for
the corresponding input function. In order to find the optimal sliding window size, we scan
through the functions with various different window sizes and compare the performances.
Figure 4.5 shows that FastSpec achieves the highest performance to detect functions with
Spectre-V1 vulnerability when the window size is set to 80 tokens, which corresponds to
0.998 as an area under the curve (AUC) value. The optimal threshold value is found as 0.48,
which corresponds to the maximum F-score. The highest F-score is achieved as 0.99, where
the false positive rate (benign functions that are mistakenly classified as Spectre gadget)
is 0.04%, and false negative rate (functions that are mistakenly classified as benign) is 2%.
We claim that further analysis of the detected functions by using symbolic execution or
taint analysis tools can reduce the number of false negative samples and provide an efficient

end-to-end security solution against Spectre-V1 vulnerability.

4.4.4 Case Study: Phoronix Test Suite Analysis

The performance comparison between FastSpec and other static analysis tools is evaluated on
the Phoronix Test Suite v5.2.1 [136]. For the ground truth, the SpecFuzz technique is chosen
as the tool that dynamically analyzes the binaries, and exploitable gadgets can be detected
with a higher success rate compared to static tools. The selected benign files have source
code since it is required to obtain the assembly files for the Spectector tool. The assembly
files are generated by compiling the source C code with the GCC' compiler. On the other
hand, the binary files are generated at the test installation; therefore, there is no further

processing required before testing the binary files in 007. For FastSpec, the disassembled

94

I' A — 4 L’ ’E
o8t/
o / (T . pa
006 / e i P
=2 ; O
‘® 'I |; ! -
o / e
Q e ,
o 0.4 { ,+° -=—=Window 50 (AUC: 0.942)
E -+ Window 60 (AUC: 0.744)
P Window 70 (AUC: 0.991)
02l 7 o —— Window 80 (AUC: 0.998)
/,-'/,':’:’ --=-==Window 90 (AUC: 0.556)
St - - --Reference
O % I I I I
0 0.2 0.4 0.6 0.8 1

False positive rate

Figure 4.5: Solid line stands for the ROC curve of FastSpec for Spectre gadget class.
Dashed line represents the reference line.

binary files are given as input. Note that since the larger benchmarks take more time to be
analyzed by 007, we preferred small size files to make the comparison with Spectector and
FastSpec easier.

Timing The overall timing results for various benchmarks are given in Table 4.2. The
analysis time of 007 and Spectector increases drastically with the number of conditional
branches since the tools analyze both paths after a conditional branch is encountered. On
the other hand, FastSpec analysis time increases linearly with the binary size. We observe
that the pre-processing phase takes the major portion in the analysis time of FastSpec while
the inference time is in the order of microseconds. We fuzz the Crafty benchmark for 24
hours and other benchmarks for 1 hour using SpecFuzz under the default configuration 3.

The effect of the increasing number of branches on time consumption is clear in the
Crafty and Clomp benchmarks in Table 4.2. Even though the Crafty benchmark has only
10,796 branches, oo7 and Spectector analyze the file in more than 10 days (the analysis
process is terminated after 10 days) and 2 days, respectively. In Figure 4.6, we show that

both tools are not sufficiently scalable to be used in real-world applications, especially when

Shttps://github.com/OleksiiOleksenko/SpecFuzz

95

the files contain thousands of conditional branches. Especially 007 shows an exponential
behavior because of the forced execution approach, which executes every possible path of
the conditional branches. In contrast, FastSpec analyzes the same Crafty benchmark under
6 minutes, which is a significant improvement.

Note that the Byte benchmark has a higher number of branches than most of the remain-
ing benchmarks. However, it consists of multiple independent files that need to be tested
separately, taking less time to analyze in total. Consequently, FastSpec is faster than oo7

and Spectector 455 times and 75 times on average, respectively.

96

| 280 | w0 | | 90 | evo | o | o oBuIoAY

L 06°0 0s°0 6V¢ 0 0 G861 00°T 00°'T I 143 €61 6°LC [puaqgsy
¢t ¢6°0 00°'T ¢L6 a1'0 00T 1999 0 0 €1 8¢ 169 8°0¥ dos,
6 00'T €€°0 10¢ 80 Gc0 €18 0 0 1 61 691 1'9¢ UPUaqoLT,
4 99°0 00°'T €9 0 0 1€¢ 0 0 € v €11 0°¢ce wrear)s
ot 00°T 00°'T ¢0ct G6°0 €v0 607¢ €8°0 00T 9 67 60€ 0'8¢ Jrew)soq
(4 00°T 00°'T Ve 00°T 060 9¢T 00T 00T T v 16 el sudanb-Ty
(4 00°T €e0 Ve 00T 0g'0 sig! 0 0 ! g 0.4 G¢'€l MqIN
€ €€0 00°'T 90¢ 00°T 090 L9¥ 0 0 € 9 70T g8 Lzz1q9
8 00°T 0s°0 €91 60 0 G6¢ 00T 00°'T ! 1T 6€T1 G'Le fe1-p
5 RS 080 €¢0 g8y | 1670 09°0 Lep 0T< | ¥G°0 00’1 47 L0c | 96L0T | 8764 Lyer)
Qg 00°T 00°'T 10 8°C 60 600 I QLT 0 0 ! i VOVT | V6L duwor)
4! 980 00°'T G1rt €70 00T 00¥ 06'0 040 L €8 €9¢ | G'€8T g
%MMWL 1809y | UoIsIRIJ @AMMN [[e09Y | UOISIORIJ mmmwmrw 809y | UoIsIvIJ D4 oqtt | g Amww% e
Jodggseq 10309320dg L00 zzngoadg

(suorjouny pajoejep Jo Iaquuny :DJJH# ‘SUONOUNJ Jo Iaquiny :0J#
‘sorpourRIq [RUOIIPUOD JO IoqUINN gD#) £0799700dG WY} I9)Se] SO} G, PUR /00 URY) I9)Se] SO} GGf aFeIoAr U0 ST 29dGIse]

JRI[} SMOU[S UWIN[OD Jse[O], "9YNG 1S9], XIU0I0YJ o1} uo d2odgyse,] pue ‘[g,] 10300100dg ‘[pgg] Loo jo uostredwio)) :g'§ o[qR],

97

x10*

67 6007
8 Spectector

5" l@FastSpec

102
Number of Branches

Figure 4.6: The processing time of FastSpec is independent of the number of branches
whereas for Spectector and 007 the analysis time increases drastically.

Baseline Evaluation The number of gadgets found by the tools varies significantly.
While 007 and FastSpec report each Spectre gadget in a binary file, Spectector outputs
whether a function contains a Spectre gadget or not. To be consistent, if a control or data
leakage is found in a function, it is reported as a vulnerable function by all three tools.

The precision and recall rates for 007, Spectector and FastSpec are given in Table 4.2.
The precision is calculated as TP/(T'P + FP). TP is the number of overlapping gadgets
detected by a tool. FP is the number of functions that are classified as Spectre gadgets
mistakenly. The recall value is computed as TP/(TP + FN) where FN is the number of
gadgets that are not detected by a tool.

In some cases, 007 is not able to track the control flow when the number of function calls
increases in a gadget, which yields high false negatives and low recall. Thus, 007 suffers
from the extraction of complete control flow graph. Spectector tends to give more false
positives compared to 007 and FastSpec. This is because some unsupported instructions
are skipped by the tool and the broken Spectre gadgets by specific instructions are still
classified as Spectre gadget. On the other hand, FastSpec has low false negatives since all
the Spectre gadget patterns are detected with a confidence rate higher than 0.48. When the
file size increases, the false positives may increase in parallel. However, these gadgets can be

verified with other tools to increase the confidence. As a result, FastSpec scans the functions

98

extremely quicker than other tools without sacrificing the precision and recall rates. Our
tool also guarantees the security of the scanned assembly functions by detecting almost all
Spectre gadgets with low FN rates. FastSpec outperforms all the compared tools in terms

of recall and precision rates by a large margin.

4.5 Discussion and Limitations

4.5.1 Gadget Verification

The gadget verification process in Section 4.3.1 is implemented in an isolated core since
the system interrupts frequently mistrain the targeted branch instructions in the gadgets,
which decreases the gadget verification success rate significantly. This situation particularly
affects the first step of the verification process where all the inputs are out-of-bounds, and
the target branch is not expected to be mistrained. Therefore, there is a need for an isolated
environment to run the verification code for Spectre gadgets. Even though the data cache
side-channel is used for the secret decoding, other side-channels can be used to decode the
secret in a Spectre gadget such as TLB structure. The secret elements in array! should
be multiplied with a constant to decode the secret into different cache lines or pages. In
the base examples [104], the secret elements are multiplied by 512 or 4096. The verification
code only selects the Spectre gadgets with these specific multiplicands, which potentially
introduces a bias in the data set. Since all multipliers in the Spectre gadgets are represented
with the same token, <imm>, our detection tool is not affected by the bias introduced by
different multipliers. For instance, in OpenSSL and in Phoronix, we observed that gadgets
with different multiplicands are detected by our detection tool.

Our verification codes also focus on more complex leakage snippets in which the secret is
not simply leaked with a simple multiplication. We observed that similar control-flow state-
ments and more complex encoding techniques are present among Kocher’s examples [104]

(Examples 10-15). After new gadgets are generated from these examples, we observed that

99

these gadgets can still be detected by our verification code. However, if the leakage mecha-
nism in the gadget is altered significantly, it is likely that the secret in the generated gadget is
not recovered during verification. Unfortunately, this introduces a bias in our data set as the
diversity of the gadgets is limited. Moreover, our detection tool might not be able to detect
more complex gadgets as these gadgets are not included in the training data set. To include
more complex gadgets in the data set, the verification code can be changed dynamically by

analyzing each generated assembly code, which is left as future work.

4.5.2 Scalability and Flexibility

Other Spectre Variants: Since pre-training teaches the general assembly syntax and takes
a major part in the training process, our pre-trained FastSpec model can be used after fine-
tuning for any assembly code task. The modifications are needed only to Step 1 and Step 4
in Section 4.3.1 since we need an initial data set and verification code to build up a larger
data set. For Spectre v1.1 [102], our verification code can be adapted by adding one more
attacker-controlled input to verify whether a speculative load is executed or not. Similarly,
the speculatively written value in Spectre v1.2 [102] can be mapped to cache lines to verify
the generated gadgets. For Spectre v2 [105], verification procedure needs to be completely
changed as the branch instruction is not a conditional branch anymore. For this purpose,
the verification code can be modified to mistrain the indirect jumps with attacker known
addresses, and then, the secret bytes in the attacker-controlled function are mapped to
separate cache lines. Since Spectre-RSB [107] works in a similar way, except ret instruction
is targeted, the same verification procedure can be adapted. Finally, in Spectre v4 [82],
the verification code can supply attacker-controlled variables to specific registers, and then,
speculatively loaded data can be decoded to a shared memory to verify the gadgets.
Other Attacks: Our approach can detect the target SMoTher-gadgets [22] in the code
space. The verification procedure in Section 4.3.1, specifically Step 4, needs to be changed

to analyze port fingerprints. For this purpose, the timing of various instructions that are

100

mapped to certain ports can be measured to detect the leaked secrets as implemented in [11].
It is highly likely that the verification takes more time for the generated gadgets since we
need to collect more timings to distinguish the cases between secret leakage and no secret
leakage. In NetSpectre [189], there are two types of gadgets. The leak gadget is very similar
to Spectre vl whereas only one bit is transmitted. Hence, the verification procedure can be
modified to profile a single cache line instead of 256 cache lines. The transmit gadget is used
to leak the secret data over the network and has a different structure than the leak gadget.
To detect the transmit gadgets with our verification code, the Thrash+Reload technique can
be adapted to measure the timing difference between cached and non-cached accesses over
the network. Again, the verification procedure potentially takes more time to analyze the
generated gadgets since the secret transmission speed is significantly lower than Spectre V1.

Other Architectures and Applications: Although we limit the scope of this work to
generating and detecting the Spectre-V1 gadgets on x86 assembly code, the use of Spectre-
GAN and FastSpec can always be extended to other architectures and applications with only
mild effort. Furthermore, specially designed architectures are not needed when pre-trained
embedding representations are used [51]. Therefore, the pre-trained FastSpec model can be
used for any other vulnerability detection, cross-architecture code migration, binary clone
detection, and many other assembly-level tasks.

The fuzzing tool increases the diversity of the generated gadgets by introducing variations
that are later learned by the FastSpec tool. In addition, the detection tool learns the generic
gadget type rather than training on small details. In Section 4.4.2, the evaluation of FastSpec

also shows that the tool can detect the potential Spectre gadgets with a 99.9% precision rate.

4.5.3 Comparison of FastSpec with Other Tools

The most significant advantage of FastSpec is the capability of detecting Spectre gadgets
quicker than other tools. If an instruction is not introduced in the training phase, the

instruction is treated as unknown, and it has a slight effect on the accuracy of FastSpec

101

since a large window of instructions is analyzed to decide on the Spectre gadgets. While
the unsupported instructions are an important issue for the Spectector tool, FastSpec can be
deployed to other architectures such as ARM and AMD. While small modifications in the
assembly code increase the chance of bypassing other tools, our tool is more robust against
small modifications. It is easier to adapt FastSpec to other Spectre variants as the vector
representations of assembly instructions can be directly used to train a separate model for
the variants. Moreover, over-tainting and under-tainting issues decrease the accuracy of
taint-based static analysis techniques. However, FastSpec tracks the registers, instructions,
and memory accesses with a vector representation, which makes it more reliable in large-scale

projects.

4.5.4 Scope and Limitations

Scope: Our scope is to generate Spectre-V1 gadgets by using mutational fuzzing and Spec-
treGAN methods as well as to detect potential Spectre gadgets in benign programs by
significantly reducing the analysis time.

Guarantees: Our verification methods in Step 4.1 guarantee that the generated Spectre-
V1 gadgets leak the secret bytes through cache side-channel attacks. Moreover, the FastSpec
tool detects the Spectre gadgets with a high precision and recall rate by identifying the gadget
patterns at the assembly level. Possible False Positive outputs do not affect the security
guarantee provided by FastSpec. The analysis time is significantly reduced compared to
rule-based detection tools.

FastSpec generalizes well, i.e., it can recognize similar patterns that are not in our training
dataset. However, it does not provide assurance of coverage (completeness) since FastSpec is
not based on hand-written rules or formal analysis. In order to decrease the False Negative
rate, the probabilistic threshold is kept low in the case studies. In contrast, while FastSpec
does not provide such guarantees, it is much faster and scales to larger code-bases.

Assembly Code Generation: VAEs are widely used for learning data representations

102

and have been applied to text and image generation tasks. However, they have some key
limitations. For example, VAEs often smooth out details in their outputs, which can make
them less suitable for applications that require fine-grained precision. They also face an issue
known as posterior collapse, where the latent space contributes little to the final output,
reducing their effectiveness for tasks that demand high levels of accuracy and detail. This
also makes it less suitable for increasing the diversity of the generated gadgets.

The challenges faced in the regular text generation with GANs [56,246] also exist in
assembly code generation. One of the challenges is mode collapse in the generator models.
Although training the model and generating the gadgets with masking help reduce mode
collapse, we observed that our generator model still generates some tokens or patterns of
tokens repetitively, reducing the quality of the generated samples and compilation and real
gadget generation rates.

In regular text generation, even if the position of a token changes in a sequence, the
meaning of the sequence may change while it would still be somewhat acceptable. However,
if the position of a token in an assembly function changes, it may result in a compilation
error because of the incorrect syntax. Even if the generated assembly function has the correct
assembly syntax, the function behavior may be completely different from the expected one
due to the position of a few instructions and registers.

The fuzzing-based gadget generation technique is based on known gadget examples. Since
there are already 15 versions of Spectre-V1, we use these gadgets as the starting point for
fuzzing. On the other hand, the available gadgets for other variants are significantly lower
compared to Spectre-V1 gadgets. To solve this issue, other detection tools can be used
to detect Spectre gadgets in benign programs. Then, new gadgets can be generated with
fuzzing technique. We leave the further investigation of generation other Spectre variants as
future work.

Recently, decoder-only Transformer models, such as GPT-4, are shown to be superior

to GANs in terms of text and code generation tasks. The use of more advanced language

103

models can help creating a more diverse and realistic data set and, ultimately, it can make the
classifier model more performant. Exploring the use of Transformer models for generating
Spectre gadgets is left as a direction for future research.

Window Size: Since Transformer architecture has no utilization of recurrent modeling
as RNNs do, the maximum sequence length is needed to be set before the training procedures.
Therefore, the sliding window size can be set to at most the maximum sequence length. On
the other hand, our experiments show that using lower window sizes than maximum sequence
length provides more accurate Spectre gadget detection and provides fine-grain information

on the sequence.

4.6 Conclusion

This work, for the first time, proposed NLP inspired approaches for Spectre gadget gener-
ation and detection. First, we extended our gadget corpus to 1.1 million samples with a
mutational fuzzing technique. We introduced the SpectreGAN tool that achieves a high suc-
cess rate in creating new Spectre gadgets by automatically learning the structure of gadgets
in assembly language. SpectreGAN overcomes the difficulties of training a large assembly
language model, an entirely different domain than natural language. We demonstrate 72% of
the compiled code snippets behave as a Spectre gadget, a massive improvement over fuzzing
based generation. Furthermore, we show that our generated gadgets span the speculative
domain by introducing new instructions and their perturbations, yielding diverse and novel
gadgets. The most exciting gadgets are also introduced as new examples of Spectre-V1 gad-
gets. Finally, we propose FastSpec, based on BERT-style neural embedding, to detect the
hidden Spectre gadgets. We demonstrate that for large binary files, FastSpec is 2 to 3 orders
of magnitude faster than 007 and Spectector while it still detects more gadgets. We also

demonstrate the scalability of FastSpec on OpenSSL libraries to detect potential gadgets.

104

Chapter 5

Automated Side-Channel Patching in
Source Code Using LLMs

5.1 Motivation

The advent of microarchitectural attacks has instigated efforts to mitigate vulnerabilities in
hardware/firmware and in deployed software libraries. Earlier vulnerabilities, such as those
exploiting secret dependent execution time and cache/memory access patterns, were followed
by more advanced attacks exploiting microarchitectural optimizations such as out-of-order
and speculative execution [105,119], transient write forwarding and shared buffers [27, 187,
219].

One of the earliest and still most accessible forms of side-channel leakage is execution
time. If a developer inadvertently writes code, e.g., with secret data-dependent branches,
by measuring the execution time, an attacker can deduce secret information. Therefore,
identifying vulnerable software and replacing them with their constant-time versions has
been a goal of security researchers. This is challenging in practice since repositories have
complex interdependence with many potentially vulnerable pieces, while their execution time

is also dependent on many factors, e.g., the platform and its configuration, the compiler.

105

Spectre was first discovered and publicly disclosed by security researchers in the original
Spectre paper in 2018 [105]. Spectre v1 occurs when attackers can trick the CPU into spec-
ulatively executing code that would not normally be run during normal program execution.
By exploiting this vulnerability, attackers can potentially access sensitive data or information
stored in the memory of other applications or the operating system. The attack leverages
the processor’s speculative execution to infer and exfiltrate this sensitive data.

In his blog, Kocher [104] shared 15 code snippets vulnerable to variations of Spectre v1
(Spectre gadgets) to test out a new version of Microsoft VC/C++ compiler with built-in
mitigation [165] based on the addition of the LFENCE instruction to sensitive parts of the code
identified by Microsoft’s static analyzer. The compiler only manages to mitigate Spectre in
the first two gadgets. Kocher points out that his code samples are far from comprehensive,
e.g., they all rely on cache modification as a covert channel, and they all reside in simple
functions more amenable to static analysis. Cauligi et al. [32] present a comprehensive
survey of existing Spectre v1 defenses and non-constant time detection tools e.g. 007 [225],
Spectector [72], SpecFuzz [160], Pitchfork [30].

Code with microarchitectural vulnerabilities, e.g., secret dependent non-constant time
or code vulnerable to Spectre v1 has since been a significant concern for the tech industry.
Hardware and software vendors have released mitigations to reduce the risk of exploitation,
but fully addressing these vulnerabilities remains an ongoing challenge. Moreover, these
mitigations often come at the cost of decreased performance, as they may disable or limit
certain speculative execution features.

In a study among the crypto library developers, 61.4% of the participants stated that
they are either not aware or they do not use the tools for testing and verifying the constant-
timeness [93] — a necessary but insufficient condition for side-channel security. To make
matters worse, many of these libraries that are used by millions of end-users are managed by
a small number of developers in open-source projects. They neither possess the knowledge

nor the resources to patch their software against such low-level leakages. Often times reported

106

vulnerabilities go ignored and unpatched in publicly available open-source crypto libraries
used by millions, e.g., see Microwalk-CI [232], due to lack of resources. Another striking
example is in the OpenSSL Blog Post [44] explaining their decision on why they chose
not to patch for newly discovered Spectre gadgets reported in [146] : “Most potentially
vulnerable code 1s extremely non-obvious, even to experienced security programmers. It would
thus be quite easy to introduce new attack vectors or fix existing ones unknowingly.” and
“Automated verification and testing of the attacks is necessary but not sufficient. We do
not have automated detection for this family of vulnerabilities, and if we did, it is likely that
variations would escape detection.”. These comments highlight the need for reliable and
transparent patch automation.

In this work, we study the use of LLMs for automated patching of security-critical soft-
ware. Indeed, it is expected that 80% of the software development lifecycle will use generative
Al i.e., LLMs, by 2025 [62]. Thus, evaluating LLMs’ capability to generate security-critical
implementations is an urgent need. What happens if we use ordinary prompts to generate
crypto code, and how can we improve code generation to improve side-channel security while
ensuring functional correctness?” We are encouraged by rapid advances in LLMs. Fueled by
recent innovations in Transformer networks, generative models, and the availability of mas-
sive datasets and large compute clusters, it has become possible to train Large Language
Models (LLMs). LLMs such as GPT3 [26] and GPT4 [161] by OpenAl, BERT [51] and
PalLM2 [12] by Google, RoBERTa [127] and LLaMA [210,211] by Meta Al have shown im-
pressive performance in Al applications and in natural language processing (NLP). These
tools are also trained using code snippets, allowing one to parse and even generate code in
common programming languages flexibly.

In this work, we study the use of LLMs in concert with state-of-the-art leakage and
vulnerability detection tools to fix data-dependent non-constant time behavior, as well as
secret-dependent branching and Spectre vl gadgets. Such vulnerabilities are known to exist

in numerous security libraries deployed on millions of machines. Yet, due to the lack of

107

resources, i.e., experts and financial resources, they go unpatched. Our goal is to make use
of the massive recent advances in LLMs such as OpenAl GPT, Google PaLM, and Meta
LLaMA to generate patches automatically. Note that LLMs are fairly large, and it takes
weeks to months to train on massive datasets, resources that only large companies have
access to. Our goal is to utilize LLMs via API access to bring down the cost of patch

deployment to cents per microarchitectural leakage.

Contributions

e We present the first comprehensive study of state-of-the-art LLMs, i.e., OpenAl GPT,
Google PaLM 2, and Meta LLaMA, to automatically patch microarchitectural vulnerabil-
ities such as secret dependent (non-constant time) code and Spectre v1 gadgets.

e We build a toolchain that tests binaries for leakage and Spectre detection tools, specifi-
cally Microwalk [232], Pitchfork [30], Spectector [72], and KLEESpectre [223], and then
automatically generates security patches to be included in the source files using LLMs.

e From a Continuous Integration/Continuous Development (CI/CD) perspective in the soft-
ware development life cycle, the proposed framework allows us to patch the source code
(e.g., C/C++, Javascript, etc.) while testing the binary after compilation on a target ma-
chine. Compared to binary patching, we retain the ability to review and revise the source.
At the same time, we are also taking into account the effect of the compiler and platform
configuration on security and efficiency by testing the binary for leakage. This approach
allows us to continuously improve the software as hardware systems and software stacks
evolve.

e On a microbenchmark of C code we compiled from known vulnerabilities, GPT4 excels in
patching 97% of all leakages successfully of every type of patching points in the benchmark,
while the total cost of patching 33 leaks is at $1.34. GPT3.5 was able to fix 62% of the
leakage points while costing 19 times less than GPT4. Google chat-bison and Meta

LLaMa2 patch 56% and 35% across all vulnerabilities, respectively, albeit at much lower

108

cost.

e Our framework is only limited by the capability of the detection tools, e.g., false positives
and negatives, and will rapidly improve further with better detection tools. Similarly,
LLMs are improving at an astounding rate (almost every month, a new LLM is released),
and we expect significant improvement in the overall performance of our tool.

e From an efficiency perspective, with up to ~ 10x faster than Spectre v1 patches generated
with existing methods, our toolchain significantly outperforms compiler-based techniques
such as in clang 1fence injection. Hence, the proposed approach provides an opportunity
to remove unnecessary inefficiencies while retaining security.

e Since we are patching the source code with the output generative LLM, the patches are

also commented, which makes it easier to make sense of the patch and maintain the code.

5.2 Related Works

The field of automated program repair has seen various advances, but these studies typically
focus on syntactic and build errors, with fewer exploring the domain of security vulnerabili-
ties, and none, to date, have addressed the issue of microarchitectural vulnerabilities.
DeepFix, as Gupta et al. [77] proposed, aims to automatically correct common pro-
gramming errors using a sequence-to-sequence neural network model. However, this method
is fundamentally limited in scope, as it does not tackle any security vulnerabilities. Its
performance is also contingent on the accuracy of error location prediction, which is inher-
ently challenging. Similarly, the Break-It-Fix-It (BIFI) method by Yasunaga et al. [242]
primarily targets syntactic errors, leaving the important domain of security vulnerabilities
unaddressed. Moreover, despite improving over previous methods, BIFI’s repair accuracy
still leaves a significant percentage of errors uncorrected, pointing towards a potential need
for better training methods and error diversity. The Graph2Diff model introduced by Tarlow

et al. [200] extends the focus to build errors but continues to overlook security vulnerabilities.

109

The model’s effectiveness is also potentially limited in complex scenarios, where precise diff
prediction might not be sufficient or even feasible.

The study by Pearce et al. [166] is particularly noteworthy as it forayed into the realm
of security vulnerabilities. Their use of LLMs for zero-shot vulnerability repair is indeed
promising. However, their focus is largely limited to basic software bugs, which, while
important, is only a subset of the challenges developers face. Despite the potential demon-
strated by LLMs, the study did not extend their use to more complex and critical issues,
such as microarchitectural vulnerabilities and sophisticated crypto implementations.

Coming from the hardware perspective, Ahmad et al. [10] consider how LLMs may be
leveraged to repair security-relevant bugs present in Verilog models automatically. In par-
ticular, they explore the prompt space to show that by using OpenAl’s Codex, one may
outperform the Cirfix hardware bug repair tool on its own suite of bugs. For Java code re-
pair, Wu et al. [238] analyze five LLMs and existing automatic program repair (APR) tools
on two real-world benchmark tools. They find that out of the box, both LLMs and APR
fix only a small fraction of vulnerabilities (about 20% for Codex) but also note that fine-
tuning LLMs using APRs does improve the performance. The study by Charalambous et
al. [35] investigates us of LLMs, specifically GPT3.5-turbo, and formal verification checkers,
i.e., Efficient SMT-based Context-Bounded Model Checker (ESBMC), to fix vulnerabilities
in C. The proposed method achieves an impressive success rate of up to 80% in repairing
vulnerable code with buffer overflow and pointer dereference failures.

Garg et al. [61] focus on fixing hard-to-detect performance bugs in C# software with
zero-shot LLMs. They take a slightly different approach: given a line of code that contains
a performance bug, the line is compared to lines in a pre-constructed knowledge base to
retrieve a prompt command that can be used to convey what change needs to be fed into an
LLM. Using OpenAl’s Codex, their tool can generate performance improvement suggestions
equivalent to or better than a developer in 60% of the cases.

Kande et al. [96] study the use of LLMs for the automatic generation of hardware as-

110

sertions (in SystemVerilog) for vulnerability testing of production-grade hardware. Their
proof of concept study uses OpenAl’s Codex code-davinci-002 LLM, generating 75,600
assertions and generating correct assertions 4.53% of the time. They note that while the
assertion rate is small, further optimization can improve the rate.

Despite substantial advances in automatic program repair, a clear gap persists in ad-
dressing complex security and especially microarchitectural vulnerabilities in intricate cryp-
tographic implementations. While LLMs show promise, their capabilities need to be further
explored and expanded to tackle these complex and critical challenges effectively. This forms

a compelling motivation for our work.

5.3 Threat Model and Scope

In this work, we focus on preventing secrets from being leaked through the changes ob-
servable to software. Using microarchitectural side-channels, attackers can obtain sensitive
information such as encryption keys, passwords, etc. We assume that the attacker wants to
exploit a certain side channel on the system, and the attack requires security-critical software

that exhibits one or more of the following properties,

e Code access patterns depend on the secret,
e Data access patterns depend on the secret,

e The execution time of the code depends on the secret.

Although it is possible that even if none of these properties exist in logical channels, the
underlying hardware implementation can cause physically visible leakages, such as through
power and electromagnetic emanation, we only consider software-enabled leakages in this
work.

We also assume that the software is free of bugs and works in the intended way. Therefore,
common software bugs, such as buffer overflow, use-after-free, etc, are not considered in this

work. We assume that the attacker has the capability to measure the execution time of the

111

software or collect other kinds of metadata through shared system components such as CPU
cache and deduce sensitive information through secret data-dependent branches, memory
access patterns, or by exploiting speculative execution.

We explore the use of state-of-the-art LLMs to improve the resiliency of security-critical
software against these microarchitectural attacks. Since training LLMs from scratch is costly,
time, and energy-consuming and bears an environmental impact [211], we leave custom-
trained LLMs out of scope and focus on only prompting. Note that the models we have
evaluated are not tuned for patching security vulnerabilities, yet their pre-training dataset

is likely to contain documentation and code bases that are related to security.

5.3.1 Research Questions

In this scope, we focus on the following questions:

Q1 Using LLMs, can we gain the ability to patch large-scale software against microarchitec-
tural vulnerabilities?

Q2 How well do LLMs perform for side-channel patching across different programming lan-
guages?

Q3 What is the cost of LLM-based patching? How does it compare in reliability, cost, and
speed against human experts?

Q4 How does the patching performance vary across LLMs?

5.4 Methodology

5.4.1 Ensuring Constant-Time Execution

Since the emergence of timing side-channel attacks [106], many tools have been proposed to
validate the constant-time (data oblivious) property of software. Nevertheless, the burden
of implementing constant-time code predominantly rests on software engineers to this day.

Consequently, numerous security-critical libraries lack any form of testing within their CI/CD

112

pipelines for constant-time property [30]. To the best of our knowledge, for the first time, we

propose an automated tool that generates constant-time implementation based on LLMs.

5.4.1.1 Evaluating Side-Channel Leakage

We address a side-channel leakage by assuming a robust adversary (evaluator) with extensive
access to runtime events, including memory accesses and the execution path. The adver-
sary can also select and modify any secret system input. In the context of cache attacks,
the adversary treats memory accesses as a leakage vector, gathering all memory accesses
throughout the execution with various secret values. If a relationship between different se-
crets and memory access variation is found, the adversary can pinpoint instructions related
to secret-dependent memory accesses and reveal potential leakages. Various tools exist in
the software verification landscape to detect such leakages, each capable of ascertaining the
constant-timeness of software [93]. The selection of a specific tool is contingent upon the
particular needs and constraints of the task at hand. In our case, we employ Microwalk [231]
due to its blend of benefits while acknowledging its limitations. Microwalk leverages mutual
information, a robust measure that allows us to quantitatively assess the extent of infor-
mation leakage, providing a clear and interpretable metric. Additionally, Microwalk can
capture a wide range of potential leakages, including those from the execution path and
memory accesses. Most importantly for our use case, it can localize the source of leakage
in the binary and source code (if available). However, it is worth noting that Microwalk
requires executing the target binary multiple times to accurately estimate mutual informa-
tion, which can increase the computational costs. Hence, our choice balances comprehensive
leakage detection, quantitative assessment capability, and computational feasibility.
Microwalk first generates arbitrary inputs for a given secret. Following this, the target
binary is run on each input collecting data on memory allocations, branches, calls, returns,
memory reads and writes, and stack operations in each run. Ideally, constant-time implemen-

tations should have a linear execution path for secret input. Secret-dependent conditional

113

Software > Functions ||[€ Patch
Library
Compiler/Parser
LLM

Syntactically
correct?

Unit Tests

unctionally
correct?

Prompt

Prompt
Generator

No—>Patched

Figure 5.1: ZeroLeak patch generator framework overview.

branches leak information about the secret. By considering the execution path as a leakage
vector, we can confirm whether the same operations are performed for any secret input.
Another common leakage source, memory access, should follow a secret-independent pattern
in constant-time implementations. Hence, we ensure memory accesses are either constant or

at least not correlated to the input.

5.4.1.2 Patching for Constant-timeness

Three main challenges need to be addressed for automating the constant-time patches using

LLMs.

Challenge C1 First, patching common software bugs in simple programs often can be
resolved by changes in a few lines of code, which LLMs were shown to be capable of [166].
However, making a software implementation of an algorithm constant-time is far more com-
plex since it requires a deep understanding of algorithm logic, and keeping track of how and
where the secret is used. Also, a single code may have multiple points which contribute to

the overall leakage. Therefore, LLMs do not perform well in fixing a side-channel leakage in

114

a complex implementation in a single shot.

Challenge C2 Second, simply stating that the code is showing observable traces that are
correlated to the secret is not enough to patch a complex logic. This is also one of the reasons
why human developers have difficulty creating a constant-time code without localizing the
leakage points. Therefore, it is essential to localize the leakage points in the code for efficient

and effective patches for LLMs as well.

Challenge C3 Finally, prompts should be crafted in the proper way that explains the
reason for the leakage in the most precise and clear manner without leaving any ambiguity.
For example, instructing the LLM to “make the code constant-time” alone in the prompt
without giving any security context can cause misinterpretation of constant-timeness in the
context of time complexity, i.e., that the run-time complexity of the algorithm should be
O(1). This is clearly insufficient since we want the run-time to be independent of the actual
input values.

We overcome C1 by adopting an iterative approach. Since many of the LLMs are designed
as a chatbot, they perform better in a conversation with back-and-forth message exchange
and with feedback from a human. Since we aim to replace humans in the patching process
with a tool, we can run the generated code on the target platform with the analysis tool and
get feedback without any cost. We use a patching loop that is illustrated in Figure 5.1 that

works as follows:

e Assuming we are testing a function in a library, we first make sure the function is called
from within the Microwalk template and unit tests are ready to verify the correctness of
the code. The analysis template can also be generated using LLMs.

e Then, we compile the code if necessary and run Microwalk on it. Assuming the first
version is already correct, our tool starts parsing the analysis files and passes the vulnerable

functions to LLMs together with prompts so they can generate patched code.

115

e The patched code is verified if it is syntactically correct using parsers/compilers. If the
syntax is wrong, we give feedback to LLM until it generates a syntactically correct code.
If the syntactically correct code fails the functional correctness tests embedded in the
Microwalk template, it is forwarded to LLM again as well.

e The loop ends when there is no vulnerability found, but under limited resources, iteration

counts and total execution times can be limited.

We also append the responses given by the LLM when it is syntactically correct. As the
loop continues, the context given to LLM looks like [System, User, Response, User,
Response, .. .], which is a common practice in chatbot applications. If the context size
reaches the maximum token count of the model, we start dropping from the third message
and forward to keep the system prompt and the original function in the context all the time.

We address C2 by choosing an analysis tool that is capable of localizing the leakage
points in the binary and source code. Microwalk is a suitable selection for this purpose.
The Javascript version can tell exactly which line in the source causes the leakage. The C
version, on the other hand, can mark the leakage source at the assembly level. To translate
the assembly lines to C source code, we compile it with debug symbols and disassemble
the binary using objdump. More advanced reverse engineering tools, such as Ghidra [63]
or IDA [80], can also be used for more accurate results. After disassembling, we create a
mapping of the assembly lines to C lines for use in prompts later.

For C3, we use Microwalk’s analysis results, which show the exact leakage points as code
lines and categorize the leakage mechanism to certain classes, such as memory access-based
and conditional execution. We incorporate the analysis results into natural language, which
LLMs can understand better, as shown in Figure 5.2. We give a system prompt to the model
but with additional commands that prevent common mistakes. We identified mistakes such

as

e generating only the patched portion of the code because the rest is unchanged,

e calling a hypothetical function or variables that are not defined,

116

e changing the number and types of arguments to the given function, and changing the

name of the function,

which all break the program’s compatibility with the rest of the library. We also describe
how new functions can be added if required. Without this command, the model can give
a new function without integrating it into the main function, which also causes crashes
when we directly overwrite the main function. Finally, we include tool and language-specific
commands, shown as <specifics> in Figure 5.2, which are not necessary to generate a
secure/functional code but are required to resolve the compatibility issues, e.g., new features
like 1let, which was introduced with ES6 to Javascript causes crashes in Jalangi2 which
Microwalk backend is based on for Javascript.

When formulating prompts for patching the side-channel leakage, we consider the follow-

ing options in the user prompt:

Option 1 — Leaky Memory Access Pattern: After giving the full function, we list the
name of arrays in the line of code and give the full line and instruct the model to make the
memory accesses independent of the secret.

Option 2 — Leaky conditional executions: For this case, we parse the if /ternary from
the line and instruct the LLM to implement it without if statements and ternary operators.
Option 3 — Secret dependent loop size: We parse the termination condition in the loop
and instruct the model to keep the number of iterations fixed for every input.

Option 4 — Syntactically /Functionally incorrect code: Some iterations may generate
syntactically incorrect code, which can be detected even without running it. We use the
feedback from the parser/compiler for the next iteration’s prompt to avoid losing the attempt
to patch other bugs since they might still be logically correct. Some iterations may generate
functionally incorrect code, which can be detected during the run time. For that, we use
assert statements in the test benches and set the <crash reason> as The code is not working

correctly..
Since options are limited in this scenario, semi-adaptive prompt crafting based on a

117

System Prompt:

You are an expert at implementing constant-time
cryptographic algorithms in <language>.

Patch the given functions according to user’s
instructions. Do not give detailed explanations.
The generated code should be complete, do not omit
any part of the code. It should be able to run
without any post-processing. You can implement new
functions and integrate them with the origimnal
function. Do not introduce new arguments to the
given function. Do not change the name of the
function. <specifics>

User Prompt:

<Option 1>

<function to patch> <array names> array 1is

accessed dependent on the secret in line <line>.
Patch the code such that the array access is made
input independent.

<Option 2>

<function to patch> The condition in

<tf statement> is secret dependent and causes

;s side channel vulnerability. Patch the code such

that it does not require any conditional execution.
<Option 3>

<function to patch> The termination condition in

<loop statement> is secret dependent. Patch the

code such that loops execute the same amount of
time for every input.

<Option 4>

<crash reason> The generated code must be complete.
Generate everything even if you do not make any
changes. Try the same patch again.

Figure 5.2: Prompt template for constant time patch. We replace <language> with the
programming language, such as C or Javascript. We use <specifics> for instructing
workarounds for the tool or language-specific compatibility issues. Other variables are

self-explanatory.

118

template works well. For a more adaptive system, prompt design can be outsourced from
generative Al and by chaining LLMs [236,237]. Although the prompt templates we propose
are based on expert knowledge, the solution is scalable to large code bases since the options
provided in the templates cover all possible ways of leakages that the detection tools can

find.

5.4.2 Mitigating Spectre-vl

Scalable mitigations to Spectre-vl come with a cost of high overhead due to too generic
design. On the other hand, low-overhead solutions such as index masking require manually
changing code. Even after manually adding the mitigation in the source code, the effect of
the mitigation on the binary is often overlooked. One such example of the failure of relying
on manual fixes on source code without testing on binary was discovered by [67] on the
Linux kernel. After the emergence of Spectre attacks, Linux developers added a new API
that implements array_index_nospec macro to clamp the indexes to the arrays to maximum
array size. Although it is a correct fix, in one case, it was found to be eliminated by the
compiler because the compiler semantics is not aware of speculative execution, and it can
optimize out a critical attack mitigation. Hence, in this section, we will focus on how we
can automate low-overhead software mitigations using LLMs that are reliably verified on the

binary.

5.4.2.1 Finding Spectre-vl Gadgets

Finding Spectre-v1 gadgets in a scalable and sound way remains an ongoing research area.
However, to automate the patching process for Spectre-vl gadgets, we need a tool that
is both scalable and sound. In this work, we evaluate the usage of several analysis tools,
such as Pitchfork [30], Spectector [72], and KLEESpectre [223], which covers different as-
pects of state-of-the-art detection tools, such as security guarantees, scalability, detection

method, out-of-order execution support, handling non-determinism, and leakage model [31].

119

Although Pitchfork also supports the Spectre STL (Store-to-Load) variant, we only consider
PHT (Page History Table), the common variant supported by all three tools. Both Spec-
tector and Pitchfork use a hardware-agnostic constant time leakage model. KLEESpectre
detects if data leakage caused by the speculative execution is visible to the attacker by ex-
tending symbolic execution with micro-architectural features, i.e., cache, and tests each way
of every conditional branch (taken or not taken). It assumes the branch predictor will always

mispredict.

5.4.2.2 Patching Spectre-vl Gadgets

Although discovering Spectre-v1l gadgets presents significant challenges, devising mitigation
strategies for these gadgets is equally challenging. In this work, for the first time, we propose
using LLMs to patch functions with known leakage points in the transient domain.

Most of the challenges in patching Spectre gadgets overlap with generating constant time
crypto implementations that we explained in Section 5.4.1. Therefore, the overall ZeroLeak
framework in constant time will apply here as well, with different tools instead of Microwalk
in Figure 5.1. Since all the tools we analyzed are capable of extracting symbolic execution
trees, they can pinpoint leakage sources at the assembly level. From assembly, we use the
same approach in 5.4.1.2 to trace it back to the source code.

Our design in prompt template changes according to the speculative leakage mechanism
caused by conditional branches. The system prompt we use is very similar, except we replace
“constant-time” with “secure” since we do not want to instruct the model that there is a non-
speculative leakage in the given code. Note that the leakage mechanism in non-speculative
scenarios involves secret inputs given to the program. However, the inputs are controlled
by the attacker in Spectre-PHT and are not considered secret. For the user prompts, we

consider the following two options that are illustrated in Figure 5.3:

Option 1 — Spectre-vl Violation: After giving the full function, we parse the statement

that includes if condition or ternary operators, which are translated as conditional branches

120

N

~

)

3| <function to patch>

;| executed when the condition inside is wrong. Fix

User Prompt:
<Option 1>

<conditional statement> can be speculatively

the code such that the condition is checked
without an if statement or ternary operator.
<Option 2>

<crash reason> The generated code must be complete.
Generate everything even if you do not make any
changes. Try the same patch again.

Figure 5.3: Prompt template for patching Spectre-vl gadgets.

in the binary by the compiler. We mention that speculative execution may cause incorrect
executions even if the condition is wrong and instruct the model to replace the conditional
statement. Although more detailed prompts that include further details, such as which array
is indexed and how it is decoded, may sound more intuitive, we choose a more generic and
precise prompt that is less like to confuse low-capacity models; see Section 5.5.4.

Option 2 — Syntactically /Functionally incorrect code: We use the same approach as

in Section 5.4.1.2.

5.5 Evaluation

We evaluate ZeroLeak on both non-constant time code and Spectre gadgets. We design our

experiments in incremental hardness.

Experiment Setup For leakage quantification for constant-time code, we have used docker
images of Microwalk packages with version 3.1.1-pin for C, and version 3.1.1-jalangi2
for Javascript code. To compile the Spectre gadgets, we used clang version 14.0.0. The
experiments were conducted on a machine equipped with an Intel Core i9-7900X CPU,
running Ubuntu 22.04 with kernel version 5.19.0-50-generic. The execution times are given
in terms of C'PU clock cycle, so the results are not affected by the dynamic frequency scaling.

We analyzed nine different LLMs released by OpenAl, Google, and Meta. Of these nine

121

models, only LLaMA2 with 70B parameters is entirely open-source. For the remaining
models, low-level details such as model architecture and training data were not released to
the public. Although we expect the latest model versions to perform better, we choose fixed
models that do not get upgrades for better reproducibility. Note that all these models are
multimodal and support multiple programming and natural languages. For the comparison
experiments, we use Playground [3] web interface of OpenAl models, Vertex AI [4] prompt
design interface for Google models, and Perplexity Al [1] demo interface for Meta’s model.
For the complete automation of patching the real-world examples, we use OpenAl API
for GPT4. The configuration parameters for models used in the experiments are given in
Table 5.1. Since we used a readily deployed demo of LLaMA2, we did not have access to

configuration parameters.

Table 5.1: Parameter configurations of different LLMs used in this work. T stands for
temperature. max token limits the number of generated responses. top-p and top-k
control the diversity in the sampling method by considering probabilities and token counts,

respectively.

Model T max token top-p top-k best of
GPT4-0613 1.0 2048 1.0 - 1
GPT3.5-turbo-0613 1.2 2048 1.0 - 1
text-davinci-003 0.2 256 0.8 - 5
code-davinci-edit-001 0.7 - 1.0 - 1
chat-bison-001 0.2 2048 - - 1
codechat-bison-001 0.2 1024 - - 1
code-bison-001 0.2 1024 - - 1
text-bison-001 0.2 256 0.8 40 1

5.5.1 Patching Spectre-vl Gadgets

Since there are already existing compiler mitigations and software guidelines suggested by
hardware vendors, we compare the performance of our approach with them. For example,
adding an inline 1fence statement after if statements that act as a speculation barrier by
waiting until the conditional branch is resolved to continue execution. Figure 5.4 illustrates

two different methods for patching a Spectre gadget in the source code. The first method

122

adds an 1fence instruction between the if condition that checks if the user input idx is
within the array bounds and where that index is used. This way, even if the branch predictor
would mispredict the branch for idx>=publicarray_size, the malicious index would not be
used in the array speculatively. The second patch is generated automatically by GPT4.
The method used for this patch is often called index masking, which clamps the value of
the attacker-controlled index to the size of the array to be indexed. This way, the attacker
cannot read out of bounds. Although from a developer perspective, the code does not look
very appealing since it has a redundant if condition in line 8, the code is secure. We also
consider several compiler-based mitigations such as clang SLH, clang lfence, and USLH [248].
We compare our method for patching Spectre-v1 gadgets with other methods on a modified
set of Kocher’s examples [104], which includes 16 functions written in C from [30]. To verify
if a code snipped is a Spectre-v1l gadget, we use three different tools: Pitchfork, Spectector,
and KLEESpectre. USLH has a built-in gadget detection tool as well; however, after our
evaluation, we observed that it does not detect any of the baseline functions as Spectre-v1
gadget. After we contacted the authors, they stated that one of the baselines is in their
definition of a Spectre gadget, but the tool needs to be modified. Therefore, we did not
include it in our experiments. We also omitted KLEESpectre for compiler-based models
due to version incompatibility that requires significant updates in the tool, such as new
KLEE and LLVM versions. The results for leakage evaluation and execution time for each
mitigation on each case are listed in Table 5.2. We noticed that Spectector marks some of
cases with inline lfences mark as Spectre gadget while others mark them as safe. Since lfence
after conditional branches are proposed as the ultimate mitigation by hardware vendors,
such as Intel, we conclude they are false positives. We marked the cases with * if Spectector
does not terminate. In case 8, inline lfence from the source code is not possible since a
ternary operator was used as an array index. We observe that ZeroLeak achieves the best
performance among the compared mitigation technique while still being verified as secure

by multiple tools. In nine out of sixteen cases, the overhead caused by our approach is two

123

1 case_1(uint64_t idx) {

2 (idx < publicarray_size) {

3 ("lfence");

1| temp &= publicarray2[publicarray[idx] * 512];
5|}

6 }

1 case_1(uint64_t idx) {

// Mask idx to ensure it always falls within the range of the publicarray

// Assumes publicarray_size is a power of 2

uint64_t safe_idx = idx &(publicarray_size-1);

// Access the publicarray with safe_idx, this operation is safe now as it does not
depend on the condition

uint64_t array_value = publicarray[safe_idx];

// Now perform the condition check, and if it evaluates to true, then proceed

8 (idx < publicarray_size) {

9 temp &= publicarray2[array_value * 512];

10 }

1]}

AW N

ot

~

Figure 5.4: Spectre v1 patch examples on source code. The top one shows inline 1fence
mitigation. The bottom one shows the patch generated after our framework.

cycles or less, which shows us that intelligent and automated patches perform better than

generic mitigations.

124

y/ s/ d

y s/ d

L
9

wx &K ﬂwﬁ

S

s

axX 1¢
aX V1
aX 19
ax 99
aX ¥9
axX C¢
aX V1
axX QT
aX 0C
aX vl

daX8T1

aX VT
aX V&
aX GG
aX VT

d

d

d

d

74 X aX 9T
V. s/ aX V¢
Gq s/ aX 91
00T s/ aX V9
00T s/ aX 69
86 s/ axX 99
99 s/ aX 6T
0¢ s/ aX Q1
cv s/ aX L1
9L s/ aX GC
8¢ s/ aX 91
66¢ xs/ aX OLT
24 s/ aX 91
LS s/ aX &
9¢ s/ aX €8
24 s/ aX LT

A

o

ac
4c
4c
93
53
59
1¢
GG

Ve
&4

Ve
6¢
0€
GG

yX X aX 9
yX X aX G
yX X aX G
gX X aX T1
gX X aX GT
gX X aX VT
yX X aX 9
gX X aX ¥
yX sX aX G
yX X aX 9
yX X axX 9
gX X aX 8L
yX sX aX 9
yX X aX L
yX X aX 9
yX X aX 9

VI

€l

¢l
qnstr

TN T
2087171

o
—

—S AN M < 10 O D~ 0 D

(99) yeorgoI0Z 7 [8Fg] (99)HTSN (09) eouey Suep (00) HIS Sue[d (00) 9ousj| oul[u] (00) ouUIESRY | SOse))

'soanyisod osfej ore | [im symsoy] A[pargoadsor ‘s[00y [gzz] 01300dSHATY pue ‘[z 10300300dg ‘[0g] q10§yoytq juosordor
y pue ‘s ‘d syduosiodns oy], "108pes 01100dg € se Pojoajop SI jey) osed oY) sjussordor y pue ‘jo8pes o1300dg e se pPoajoajop
quode Suryojed o) se posn sem §[,J5) SueTd i pordurod ore soLreulq oy], ‘sonbruyoo)
UOTIRSIIIUL JUSIOPIP 10J (99) SA[AD DO N D Ul [0g] YTewypuaq oot [A-01300dg 913 JO PRSYIoA0 UOTYRIIIIN :g'G SR,

jou ST e} 2sed 91} sjuasardal

125

5.5.2 Patching a Real World Spectre-vl Gadget

In our experiments in earlier sections, LLMs showed promising performance in Spectre ex-
amples. Now, we investigate how well they can perform on a real-world target. We selected
a target implemented in OpenSSL, which was previously pointed out by [146]. In response,
OpenSSL stated they would not deploy mitigations for Spectre for several reasons, includ-
ing “maintaining code with mitigations in place would be significantly more difficult” and
“mitigations themselves obscure the code, which increases the maintenance burden.” [44].
Since we observed that LLM-generated patches for Spectre-v1 gadgets tend to use similar
methods, such as index masking which is commonly used for large commercial products,
such as browsers, We evaluate its potential on OpenSSL. We use the same system and user
prompt template that we proposed in Section 5.4.2. We use GPT4 as the patching with
the same configuration as before. GPT4 generates the patch given in Figure 5.5 in the 37
iteration. Note that the code is generated with the comments that make the patch easy to
understand. After careful review, we see that the if condition is eliminated, and the check
logic is accumulated on the mask variable. When s->shared_sigalgs array is accessed in
line 24, the index is masked with the mask variable. For malicious indices, the function
accesses the Oth element instead of a random location, even under speculative execution.

The rest of the code is masked with the same variable as well for functional correctness.

5.5.3 Patching Javascript Libraries for Constant-Timeness

There has been an exponentially growing interest in crypto libraries implemented on Javascript
over the last decade [2] following the trend that is also known as Atwood’s Law which claims
if a program can be written in Javascript, it will eventually be written in Javascript. Al-
though the popularity of some of the security-critical packages seems to follow this law, they
are not necessarily maintained well, if at all.

In this section, we focus on evaluating our framework on some of the most popular

packages available on npm, which are previously shown to be vulnerable to side-channel

126

N

User prompt:
<function body>
if (s->shared_sigalgs == NULL || idx < O || idx >= (int)s->shared_sigalgslen || s->
shared_sigalgslen > INT_MAX) can be speculatively executed when the condition inside
is wrong. Fix the problem such that the condition is checked without the if or ternary
statement.
Patch:

SSL_get_shared_sigalgs(SSL x*s, idx, *psign, *phash, *psignhash,
xrsig, *rhash) {
SIGALG_LOOKUP *shsigalgs;

if (s->shared_sigalgs == NULL
i [l idx < O
= || idx >= (int)s->shared_sigalgslen
- || s->shared_sigalgslen > INT_MAX)
= return O;
+/* If any of the conditions are true, the mask will be set to all 1s (i.e., -1).
+ * If all conditions are false, the mask will be 0. */
+ int mask = -((s->shared_sigalgs == NULL) | (idx < 0) |
+ (idx >= (int)s->shared_sigalgslen) |
+ ((unsigned int)s->shared_sigalgslen >INT_MAX));
- shsigalgs = s—->shared_sigalgs[idx];
- if (phash != NULL)
= *phash = shsigalgs—>hash;

/* Apply the mask to idx and then use the result to index the array.

* If the mask is 0, idx is used unmodified. */

shsigalgs = s->shared_sigalgs[idx & “mask];
- if (psign != NULL)
= *psign = shsigalgs->sig;
+ /* Use the mask to conditionally write the
+ * output values. If the mask is O, the output
+ * values are written. */
+
+

+
7|+ * If the mask is all 1s (any of the conditions are true), the array is not accessed.
+
+

*phash = (shsigalgs->hash & mask) | (*phash & “mask);
*psign = (shsigalgs->sig & mask) | (*psign & “mask);
- if (psignhash != NULL)
= *psignhash = shsigalgs->sigandhash;
+ *psignhash = (shsigalgs->sigandhash & mask) | (*psignhash & “mask);
- if (rsig !'= NULL)
- xrsig = (unsigned char) (shsigalgs->sigalg & Oxff);
+ *rsig = ((unsigned char) (shsigalgs->sigalg & Oxff) & mask) | (xrsig & “mask);
- if (rhash != NULL)
- xrhash = (unsigned char) ((shsigalgs->sigalg >> 8) & Oxff);

5|+ *rhash = ((unsigned char) ((shsigalgs->sigalg >> 8) & Oxff) & mask) | (*rhash & “mask);

- return (int)s->shared_sigalgslen;
+ return (s->shared_sigalgslen & “mask) | (0 & mask);

Figure 5.5: Patching OpenSSL Spectre gadget example

127

leakage but have not been patched in years due to the lack of resources. Since the training
sets of the state-of-the-art LLMs usually include scraped repositories on Github [103], they
can process multiple programming languages, including Javascript. For the evaluation, we
selected some of the targets analyzed by Microwalk [232] earlier but still remained vulnerable,
such as aes-js [144], base64-js [121] and node-forge [20]. Each of these packages has
weekly downloads ranging from 1M to 15M, which makes their vulnerability impactful®.
We used GPT4 on these libraries using the prompt template explained in Section 5.4.1.2.
The results are summarized in Table 5.3. We observed that out of 127 unique leakage
points across the libraries and files, 117 of them were successfully patched with constant-
time implementation in ~90 minutes. In aes-js, we have detected a new branch leakage
that was introduced during the patching process; however, the overall number of unique
leakage points has converged to the lowest in this state, which is why we stopped further
iterations.

In addition, we have analyzed a Javascript library implementing CRYSTALS-KYBER [23],
a post-quantum key encapsulation mechanism accepted by NIST [214]. For crystals-kyber
package, we analyzed a key encapsulation using Encrypt768 and Decrypt768 methods. We
lightly modified the syntax such that it is compatible with Jalangi2 and, therefore, with Mi-
crowalk, which only supports ES5.1. For instance, we replaced let and const keywords in
the library with var. ZeroLeak was able to patch all 133 leakages identified by Microwalk in
239 minutes. Note that most of this time is spent in dynamic leakage profiling in Microwalk.

Overall, we observe that how quickly ZeroLeak can complete the patching depends on
the speed of dynamic profiling, which varies highly across the implementations with different
numbers of leakages. Therefore, it could be misleading to give an average time/iteration to

patch per leakage for ZeroLeak.

'We excluded other packages, e.g. elliptic [86] that have dependencies on big number libraries. They
rely on BN. js [85] or jsbn.js [235], which feature dynamic length arrays as the main datatype. To secure
the dependent libraries, the entire BigNum library needs to be rewritten from scratch, relying on fixed-size
operands. We would simply ask the LLM to give us a new elliptic curve Javascript library with the same
API, rather than generating a patch.

128

Table 5.3: Patching vulnerable Javascript libraries. Total leakage includes how many times
each unique code line is triggered during the high-level algorithm which also represents the
importance of each unique leakage. *Introduced during patching.

Lib Time Memory Leak Branch Leak
toraty [mins] Patched Patched
Total Unique Total Unique

aes-js [144]

AES-ECB 13 16/24 16/24 | 0/1* 0/1%
base64-js [121]
base64-encode 18 4/4 4/4 - -
base64-decode 4/4 4/4 - -
node-forge [20]

AES-ECB 80/80 40/40 1/1 1/1

AES-GCM 61 | 284/294 47/49 | 2/2 1/1
base64-decode 4/4 4/4 - -

crystals-kyber [214]
Kyber-768 239 4/4 2/2 | 129/120 4/4

5.5.4 Comparison of LLMs

To evaluate the effect of selected model, we compare nine state-of-the-art LLMs from promi-
nent companies, OpenAl, Google, and Meta, which released their models between March
2022 and July 2023. While LLaMA2 is the only fully open-sourced model, we have only
API and/or web interface access to the other evaluated models. We have only evaluated the
LLaMA2 model with 70B number of parameters since the size and capabilities of 7B and
13B versions are much more limited compared to the 70B one.

For comparing the performance on Spectre-vl, we have used the same set of examples as
used in Section 5.5.1. For constant-time patches, i.e., leaky memory access patterns and leaky
conditional branches, we curated a new microbenchmark from the earlier research papers [13,
30,54,112,182,227,230,234], which includes 4 functions with memory access pattern leakage,
12 functions with branch leakage and 1 function that has both vulnerabilities. The functions
are available in Appendix B.2. We also prepared a unit test for each of the leaky functions,
which allows us to ensure functional correctness during patching.

We compare the models with both quantitative measures, such as the successful number

of patches for different benchmarks, estimated cost from the number of tokens used per model

129

Table 5.4: Patching performance with different models. Constant-time problems, such as
secret-dependent memory access patterns, conditional branches, and varying loop sizes are
tested using Microwalk. Spectre-V1 was tested using Pitchfork. We counted a patch as
successful if it has the same functionality, is marked as secured, and is generated in a
maximum of 5 trials. "Edit models are free to use by OpenAl. *Since we used a demo
website, this does not include the cost of deploying the model on a local server and related
costs to that.

Model Release Date Publisher Open Memory Branch Spectre-V1 Cost [USD]
GPT4-0613 06/13/2023 5/5 12/13 16/16 $1.34
GPT3.5-turbo-0613 06/13/2023 OpenAl 2/5 9/13 10/16 $0.07
text-davinci-003 10/28,/2022 P 0/5 7/13 12/16 $2.29
code-davinci-edit-001 ~ 03/15/2022 0/5 8/13 5/16 $of
chat-bison-001 07/10/2023 0/5 5/13 14/16 $0.06
codechat-bison-001 06/29/2023 Google 0/5 6/13 0/16 $0.28
code-bison-001 06,/29/2023 & 1/5 4/13 0/16 $0.04
text-bison-001 06/07/2023 1/5 5/13 0/16 $0.10
Claude-Opus 03/04/2024 Anthropic 4/5 10/13 13/16 $1.69
LLaMA 2-70B 07/18/2023 Meta 1/5 8/13 3/16 $0*
LLaMA 3.1-405B 07/23/2024 4/5 8/13 15/16 $0*

and the current pricing given by the publishers, and qualitative measures, our observations
on the responses of each model. The results are summarized in Table 5.4.

Overall, GPT4 excels in patching every type of leakage we evaluated compared to other
models by successfully patching 97% of all leakage points in the benchmark, while the total
cost of patching 33 leaks remains at $1.34. In OpenAl models, we see an improving trend
with the newer releases. GPT3.5 was able to fix 62% of the leakage points while costing 19
times less than GPT4.

Interestingly, although text-davinci is an older model, it gives competent results similar
to Google’s chat-bison model, which was released almost a year later. We claim it is because
it generates five completions and selects the best one. Generating five completions at a time
also reflects on the cost. Specifically, chat-bison can show a similar performance with
text-davinci and cost 38 times less. Google text-bison and codechat-bison models
do not generate variations in default temperature (0.2), and even with higher temperature
levels (0.7), the performance is poor compared to other models. Most of the time, they

return the same code back as the “fixed code”. Also, in general, *~bison-001 models do not

130

memory_leakage_case_2_transform(kval) { LUT[kval % 16]; }

memory_leakage_case_2_transform(kval) {
// This function is constant-time because the array access is input-independent.
// The array is indexed by a constant value, which does not depend on the secret.
LUT [kval % 16];

(S I N R

Figure 5.6: A failed example from codechat-bison. Original function is on top, and the
generated patch is below.

handle newline characters well, resulting in all code generated in a single line. Despite being
syntactically/functionally correct, it makes it harder to localize the leakage and generate
a precise prompt. Therefore, we use a code formatter, clang-format, to standardize the
format and give better readability for patching agents.

If the interface of the model allows, we continue the patching process by giving the
next vulnerable line in the function after the previous one is fixed. If not, we restart the
conversation by giving the new version in the user prompt. For functionally/syntactically
incorrect functions, we do not give feedback on the error since it might cause an unfair
evaluation of the models. Some of the model interfaces are designed better to get feedback,
e.g., GPT models. In this scenario, we regenerate the code using the last given context.
Since the models are probabilistic with a temperature value of T' # 0, it samples a new series
of tokens according to the probability distribution. We rarely see syntactically incorrect
responses from all of the models. We observed that most of the leakage points get fixed
in the first few trials if they will get fixed at all. Therefore, we limited the number
of trials to five. Increasing the number of trials in this experiment would not change the
results significantly. We provide an example of failure from Google’s codechat-bison model
in Figure 5.6. The model adds a comment stating the function is constant time even though
it is the same exact function without any patch. Surprisingly, we observed that code-specific
models perform far worse than more generic multimodal chat models such as GPT4, GPT3.5,
and chat-bison. We hypothesize the reason is that these generic models have been trained

with more parameters, resulting in a higher capacity for understanding. Also, they interpret

131

natural language better, which is how we translate the feedback from the analysis tools. We
observe that even if the LLM generates a “constant-time looking” C code in most cases, a
verification on the binary level is required. For example, the following function has no if
statement or ternary operator, yet, the compiler generates three different conditional jump
instructions after each comparison to increase the performance.

equal(*p, *q) {
(pl0]==q[01) &&(p[1]1==q[1]) &&(p[2]==q[2]);

Since our framework takes the binary and analyzes it dynamically, these cases are captured

as well and get rejected.

5.6 Discussion and Limitations

Choice of Generative AI Algorithm GANs (Generative Adversarial Networks) and
VAEs (Variational Autoencoders) are designed for tasks, such as creating realistic images or
processing signals, but they fall short when it comes to generic code generation and fixing
security issues. These methods are excellent for tasks like image denoising or generating
visual content, but they are not built to handle the structured, rule-based nature of pro-
gramming languages. LLMs, by contrast, are trained on diverse datasets, allowing them to
grasp the deeper relationships in code much more effectively. What sets LLMs apart is their
ability to adapt and scale across various programming tasks without needing to be retrained.
They can fix security vulnerabilities or generate accurate code thanks to their training on
massive datasets, which helps them maintain coherence even in complex scenarios. Unlike
GANSs or VAEs, LLMs can iteratively improve their outputs using feedback mechanisms like
prompt engineering. This flexibility and their capacity to understand both the structure and
meaning of code make LLMs far better suited for programming-related tasks than GANs or

VAEs.

132

Code Coverage Our dynamic testing mechanism highly relies on the coverage of the
profiling tool. In Microwalk, it is possible that certain parts of the program are not executed
and, thus, not being tested. In some scenarios, the LLMs generated correct patches for the
leaky parts identified by Microwalk while removing some parts that are not executed with

the given inputs.

Understanding the Leakage Path One of the challenges with fixing a given Javascript
implementation with a constant time version using LLMs is giving the prompts so that the
model understands how the leakage mechanism works. For instance, when we explain how the
secret leaks through an input-dependent memory access pattern, the model attempts to break
the leakage path by simply copying the lookup table into a new buffer and implementing
the same leaky pattern. The resulting code is an expanded version of the original code with

similar behavior.

Determining Secrets Current leakage detection tools require the secrets to be specified,

which requires human intervention. We leave the automation of this to future work.

Tool Imperfections Microwalk occasionally encounters issues with LLM-generated code,
leading it to run indefinitely without termination. To counteract this, we have implemented a
timeout mechanism to break out of non-terminating loops. It is worth noting that Microwalk
sometimes flags high-level function calls as potential memory leaks, even in the absence of
direct memory access on the flagged line. In such cases, rather than patching the file directly,
it is essential to locate and inspect the function’s declaration. Additionally, Microwalk has

been observed to identify memory leakages when accessing flags of JavaScript objects.

Hard to Fix Functions Some functions are inherently tough to fix. In such a scenario,
we may need to eliminate that function from the caller function completely. However, this

creates additional complications. We observed that LLMs may remove the function call

133

without implementing a replacement. Giving feedback for the target variable is tricky since

it is not used directly in the same function.

Comparison of Security Vulnerabilities From our experiments with Spectre-v1l and
general side-channel leakage, we observed that different models are better at different vul-
nerabilities. Yet, as model capacity increases, overall performance on both types of vulner-

abilities increases.

Ethical Questions with AI Contributions Although the code generated by LLMs is
verified as secure by multiple tools, we did not push any code to security-critical libraries
used by millions since, considering the ongoing debate on Al ethics and regulations, it may
raise ethical and legal concerns. We instead will share the code with the library authors for

their revision with a full disclaimer that they are not generated by human developers.

5.7 Conclusion

In this work, we introduced ZeroLeak, the first framework that uses LLMs to automatically
detect and patch side-channel vulnerabilities in software. We demonstrated the effectiveness
and efficiency of our framework with an extensive evaluation of several leakage types, such
as secret-dependent memory access patterns, conditional execution, varying loop sizes as
well as Spectre-vl gadgets. We show that our tool can automatically patch leakage points
in C and Javascript. ZeroLeak was able to patch side-channel leakage in security-critical
libraries that are not maintained but used by millions of people, such as aes-js, base6/-js
and node-forge in less than 1.5 hours for only cents per patch. Finally, we showed our tool

can automatically patch a real-world Spectre-v1 instance in OpenSSL.

134

Chapter 6

Exploring pArch Vulnerabilities Using

Reinforcement Learning

6.1 Motivation

In the past two decades, our computing systems have evolved and grown at an astounding
rate. A side effect of this growth has been increased resource sharing and, with it, erosion
of isolation boundaries. Multitenancy has already been shown to be a significant security
and privacy threat in shared cloud instances. VM boundaries can be invalidated either due
to software or hardware bugs [47,91,142,217] or by exploiting subtle information leakages
at the hardware level [143] . Emerging microVM solutions offer isolated VMs to ensure
secure computing environments. For instance, Amazon’s Nitro and more recent introduction
of Firecracker aim to completely virtualize hardware resources and allow sharing using a
lightweight solution which already powers lambda functions handling trillions of requests
each month for AWS customers. While promising, the details of the isolation offered are not

made public by AWS and have yet to be vetted by third parties.

Microarchitectural Threats Arguably, one of the greatest security threats comes from

attacks that target the implementation through side-channels or from hardware vulnerabil-

135

ities. Such attacks started as a niche exploiting leakages through execution timing, power,
and electromagnetic emanations but later evolved to exploit microarchitectural (pArch)
leakages, e.g. through shared cache and memory subsystems, speculative execution, shared
peripherals, etc. pArch threats represent one of the most significant types of vulnerabil-
ities since they can be carried out remotely with software access only. Prime examples of
these threats are the early execution timing [106] and cache attacks [122,122,241], and later
Meltdown, Spectre [105], and MDS attacks [27,142,216] which allow an unprivileged user
to access privileged memory space breaking isolation mechanisms such as memory space
isolation across processes, cores, browsers tabs and even virtual machines hosted on shared
cloud instances. Active attacks, e.g. Rowhammer, have also proven effective in recovering
sensitive information [110] and [9,148]. While numerous practical countermeasures were pro-
posed and implemented, there remains a massive attack surface unexplored. Indeed, 5 years
after Meltdown was mitigated (August 2023), a new transient execution vulnerability, Down-
fall [141], was discovered that exploits speculative data gathering and allows Meltdown-style

data leakage and even injection across threads.

Lack of Access to Design Internals A significant factor contributing to the difficulty
of evaluating the security of large-scale computer systems is that design details are rarely
disclosed. Given only superficial interface definitions, researchers are forced to reverse en-
gineering and black box analysis. While companies have access to the internals of their
system, it is hard to argue that they are aware of their own designs either due to third-party
IPs, mobility of engineers, and silos isolating their engineering teams from each other. IPs
are orphaned with little superficial information surviving after only a few years of breaking
institutional memory. These factors combined pose a great danger for pArch security.

The primary goal of the proposed work is to answer the following question: Can we
use Al to automatically find brand-new vulnerabilities? In practical terms, can we build

an Al agent that can discover the next Meltdown or Spectre vulnerabilities? Currently,

136

there are intense efforts in the cybersecurity research community to deploy Al tools to scan
Open Source Software (OSS) for known vulnerabilities, e.g. for detection in pArch we
have [30,54,72,222,231,232] and for patching [61, 77,166,200, 238,242] and [208].

We take on a more challenging problem and investigate how we can build an Al Agent
that constantly searches the target platform for brand new pArch vulnerabilities. In a way,
such an ability would bring true scalability and a tipping point since, if granted, we could
surpass human abilities by creating as many Al Agents as we want by just throwing more
cycles at the problem. In the hands of software/hardware vendors, such a tool would allow
us to address vulnerabilities early on before the software advances deeper in the deployment
pipeline. What is missing is the know-how to put such a system together i.e. a tool that
can constantly analyze a hardware/software stack under popular configurations, identify and
report found vulnerabilities, articulating cause and effect and severity of the vulnerability.
In this work, we take inspiration from cybersecurity researchers on how they came up with

new vulnerabilities:

Randomization There is a healthy dose of manual or automated trial and error in dis-
covering new vulnerabilities. In pgArch security fuzzing has become an indispensable tool
to test randomized attack vectors and thereby identify or generate improved versions of
vulnerabilities. For instance, Oleksenko et al. [159] developed SpecFuzz to test for specu-
lative execution vulnerabilities. The tool combines dynamic simulation with conventional
fuzzing for the identification of potential Spectre vulnerabilities. Another example is Tran-
syther [142] , a mutational fuzzing tool that generates Meltdown variants and tests them to
discover leaks. Transyther found a previously unknown transient execution attack through
the word combining buffer in Intel CPUs [142]. In [94], Jattke et al. use fuzzing to discover
non-uniform hammering patterns to make Rowhammer fault injection viable in a large class
of DRAM devices. While effective, fuzzing, as currently practiced in pArch security, only

works in small domains and fails to scale to cover larger domains to discover new vulner-

137

abilities. Indeed, SpecFuzz for Spectre v1 is only able to Spectre gadgets, and Transyther
discovered the Medusa vulnerability since it is reachable with mild randomization from Melt-
down variants.

The discovery of the timing channel by Kocher [106] led to the discovery of cache-timing
attacks [163]. Similarly, sharing in Branch Prediction Units (BPUs) led to the exploitation
of secret dependent branching behavior to recover leakages [6]. These attacks led to pArch
Covert Channels that may be used intentionally to exfiltrate data, e.g. by signaling via cache
access patterns and break isolation mechanisms. Covert-channels were first used by many
researchers as an initial demonstration of the existence of a side-channel, with the channel
rate providing a measure for the level of the leakage. Covert channels and manipulations in
BPUs, in turn, became enablers for Transient Execution Attacks such as Meltdown, Spectre,
and later MDS attacks. Further, the recent work [141] uses the Meltdown style data leakage
and the LVI style [216] data injection mechanisms in the context of SIMD instructions to
discover new vulnerabilities.

The x86 instruction set is a complex architecture that supports thousands of instructions,
registers, and addressing modes, with each microarchitecture adding layers of optimizations
for performance and efficiency. These optimizations, while beneficial, introduce complexi-
ties that can hide vulnerabilities, as seen with exploits like Meltdown and Spectre, which
exploit unexpected microarchitectural behavior to expose sensitive data. Traditional testing
methods like random fuzzing are inadequate due to the vast number of instruction combi-
nations and the specific, rare conditions that often trigger vulnerabilities. Complex features
like out-of-order and speculative execution increase both performance and the difficulty of
detecting flaws, making the discovery of microarchitectural vulnerabilities challenging.

An effective approach involves intelligent, feedback-based testing, where processor be-
havior under different conditions guides the search for vulnerabilities. This approach allows
testing to focus on high-priority areas, improving efficiency and effectiveness. Feedback

mechanisms can also adapt to new microarchitectures, adjusting their methods for each pro-

138

cessor generation, an essential feature given the rapid evolution of hardware designs. Machine
Learning (ML) enhances this feedback-driven approach by identifying patterns in cache or
power usage that indicate potential vulnerabilities. Over time, ML models improve, enabling
more systematic and scalable vulnerability discovery across diverse processor designs. RL
further advances this approach, using a reward-based system to optimize instruction space
exploration. RL agents prioritize instruction sequences that reveal anomalies, efficiently bal-
ancing exploration with exploiting known vulnerabilities, making them suitable for evolving
architectures.

In summary, random fuzzing alone is insufficient for discovering vulnerabilities in modern
x86 microarchitectures. Integrating feedback mechanisms with RL allows a more targeted,
adaptable, and effective approach, essential for uncovering hidden vulnerabilities and main-
taining security in rapidly advancing processor designs.

In this work, we make the following contributions:

1. We propose a novel approach to discovering microarchitectural vulnerabilities using

RL.

2. We develop a custom RL environment that simulates the execution of x86 instructions

on a microarchitecture, allowing the agent to explore the instruction space.

3. We find new transient execution mechanisms based on masked FP exceptions and

MME /x87 transitions demonstrating the effectiveness of the RL agent in discovering

vulnerabilities.

6.2 Related Works

puArch vulnerability discovery has attracted significant attention, leading to the development
of several tools and methodologies aimed at exposing speculative execution and side-channel
vulnerabilities. Osiris [229] introduces a fuzzing-based framework that automates the dis-

covery of timing-based pArch side channels by using an instruction-sequence triple notation:

139

reset instruction (setting the pArch component to a known state), a trigger instruction
(modifying the state based on secret-dependent operations), and a measurement instruction
(extracting the secret by timing differences). Transynther [141,142] automates exploring
Meltdown-type attacks by synthesizing binarizes based on the known attack patterns. For
the classification and root cause analysis of the generated attacks, Transynther uses per-
formance counters and pArch “buffer grooming” technique. AutoCAT [129] automates the
discovery of cache-based side-channel attacks on unknown cache structures using RL. Several
studies also focus on using hardware performance counters to detect speculative execution
issues. For example, [158,174] use performance counters to monitor mis-speculation behav-
ior. More recently, [34] proposed a particle swarm optimization based algorithm to discover
unknown transient paths. Their main assumption is different instruction sets do not in-
terfere with each other do not share the same resources, therefore, they can be analysed
independently. In this dissertation, we show that this assumption limits the exploration of
the instruction space and combining different instruction sets can lead to new mechanisms
of transient execution.

Although, these tools have shown promise in detecting pArch vulnerabities, they are
limited in their ability to efficiently explore the large instruction space and the complex

interactions between different instructions.

6.3 Threat Model and Scope

Our threat model considers scenarios where attacker and victim processes are co-located in
shared hardware environments, which expose vulnerabilities to pArch attacks. Co-location
can manifest in several forms, including but not limited to threads on the same process,
processes on the same host and virtual machines on a shared server. These attacks exploit
shared pArch resources to infer sensitive data from victim processes, bypassing traditional

memory isolation mechanisms.

140

We assume the CPU microcode is up-to-date with the latest mitigations, and the software
has no bugs and SMT is enabled. We assume no access to the confidential design details of
the processor, limiting our analysis to black-box testing. This restriction reflects the real-
world scenario where attackers must rely on external observations and performance counters
to reverse-engineer the processor’s internal behavior.

Although we have not seen example of such an exploit in real-life yet, if unmitigated, these
attacks can lead to significant data breaches, including the extraction of cryptographic keys
and other sensitive information. In this work, we focus on discovering pArch vulnerabilities
using reinforcement learning and we focus on the following research questions:

e RQ1. How can we design an RL framework that efficiently explores the pArch space?

e RQ2. Can RL discover unknown pArch vulnerabilities?

e RQ3. What are the challenges and limitations of using RL for pArch vulnerability

discovery?

6.4 Our RL Framework

In this section, we introduce our RL framework designed for pArch vulnerability analysis.

Automated analysis of pgArch vulnerabilities poses the following challanges some of which

were also identified in earlier works [34,142,229]:

e C1. Modern processor designs are complex and their instructions sets are large. Exhaus-
tive search in the instruction space is infeasible.

e C2. Mapping an instruction sequence to a certain pgArch vulnerability is non-trivial and
requires expert knowledge.

e C3. The environment is high-dimensional and non-linear and the system state is only
partially observable.

Earlier works attempted to solve C1 by either limiting the type of instructions [34,

158] or limiting the length of the instruction sequence [229]. In this work, we propose a

141

RL agent
9 Legal Instruction Set State

MM3, gword [R15]

ROR EBX, ©
=L PADDQ
</> PMAXUD XMM2, XMM2 \F/:((;Sgl:_‘[)zP é;&l YMM1
5

A asm embeddings
rorgl
10110
A

text embedding model

/ (orgl
Dynamic Testing
Y [— 1) =]
LD e Je—H[B
A = =]

Processor

Figure 6.1: Overview of the RL framework for uArch vulnerability analysis.
P: Concatenation operation

novel approach to address this challenge by leveraging RL to guide the search for pArch
vulnerabilities. Our framework is designed to efficiently explore the instruction space, learn
the optimal policy for selecting instruction sequences, repoduce known vulnerability and,
if exists, discover unknown vulnerabilities. The framework is illustrated in Figure 6.1 and

consists of the following components:

6.4.1 Environment

We build a custom environment based on the underlying CPU model. The environment
represents a black-box model of the CPU microarchitecture, where the agent can only interact
with the CPU through the instruction sequences. It takes the instruction sequences generated
by the RL agent, executes them on the CPU, and returns an observation and a reward. It
also updates the state after every action taken.

At the start of each episode, the environment initializes by resetting the instruction state
and clearing the performance counter readings. A reset function is triggered at the beginning

of each new episode to ensure the agent starts with a fresh state.

142

All sequences, performance metrics, and detected byte leakages are logged for post-
training analysis. The logged data aids in identifying patterns or characteristics in sequences

that lead to vulnerabilities and provides insights into the agent’s decision-making process.

6.4.2 RL Agent

The RL agent is an multi-layer perceptron (MLP) that generates actions based on obser-
vations given by the environment. In this case, the agent’s goal is to select an instruction
that will be appended to the instruction sequence. The agent is trained using the PPO
algorithm. The goal of the agent is to maximize the reward signal by selecting the best

sequence of actions and eventually trigger pArch vulnerabilities.

6.4.3 Action Space

We define an action as the selection of an assembly instruction from the instruction set.
To map the discrete actions to actual assembly instructions, we use [5]. The action space
is constrained to instructions that are supported by the CPU under test and documented
by the vendor. This constraint helps the agent focus on relevant instructions that exist in
the real-world programs. Since some of the instruction extensions has large number of in-
structions and operand variety, (e.g. AVX-512), we construct the action space hierarchically.
For example, we first select the instruction set (e.g. AVX-512), then the instruction (e.g.
VMOVDDUP), and finally the operands (e.g. XMMO0, XMM1). This hierarchical structure
helps prevent larger instructions sets dominating the smaller ones since the agent will ini-
tially randomly select insturction during the exploration phase. To handle the difference in
the number of instructions in each set, we use map different actions to the same insturction
or operands using them modulo operation. For instance, if the maximum number of instruc-
tions in a set is 10 but the model selected 12th instruction, we map it to 12 mod 10 = 2nd

instruction in the selected set.

143

6.4.4 State

Eventhough, there are more variables that affect the CPU state other than just the input
instruction sequence, such as, cache content, internal buffers, registers, etc., we simplify the
state representation to only the instruction sequence. The impact of other factors that affects
the CPU state can be minimize by running the same instruction sequence multiple times
until the real state becomes stable, which is a common practice in pArch attacks [122,241].

After each action, the generated assembly instruction is added to the current state.

6.4.5 Observation

Since we do not have access to hardware debug interface, we cannot directly observe the entire
state of the CPU. Therefore, it is a partially observable environment and the observation can
only capture a subset of the environment state as it is mentioned in C3. We tackle this
challange by designing an observation space that consists of a static and a dynamic part.

The static part of the observation is the generated instruction sequence. Similar to the
earlier works [134,206], we use embeddings to convert the instruction sequence into high-
dimensional fixed-size vectors using a pre-trained LLM. Embeddings capture the patterns
in the assembly code so that the agent understand the structural and functional dependen-
cies between instructions. Before inclusion in the observation space, embeddings undergo
normalization to ensure consistency in data scales.

The dynamic part of the observation is the hardware performance counters. Vendors
give access to low-level monitoring of the CPU events such that developers can identify
bottlenecks in their applicaitons and optimize the performance. In this work, we use the
performance counters to partially capture the CPU state. For measurement, we embed
instruction sequences in a template assembly file, ensuring valid memory addresses in R15
register to prevent segmentation faults. General-purpose registers are preserved on the stack

to avoid unintended corruption. Each sequence is executed multiple times to minimize noise.

144

PoAIROaI $)ANIIDIUT dIeMPIRE]

UOIND9XS A[PUSLIJUN O} 9NP PIIOQe SHUOAD PAII)OI UOISI[O YDO] 9IeMPIR]

OAI}OR seM peaI(} ofIads o) UPIYM SULINp s[04

OATIOR SBM PROIY) dUO IS Je UoYM SO[ILN)

SISISS® J] 9} SUIpn[oxe S)SISSe 9poon JO IdqUIN N

9s1SS® J 10 SS [YIM SI[OAD)

SONSST SULIOPIO AIOWDUWL O} 9NP SILI[D SUIYIRIA

9pPO0d SUIAJIPOW-J[9S 0} ONP SILI[D SUIYDRIA

SISO QUIYDRW JO IoqUINU [R)O],

IRS[D QUIYIRUW WIOIJ ISA0DAI 0 P[RS SeM I0JRDIO[[R () SI[OA))
(s30[s uoryeoo[[R) Sdo-0IDTI PaIl}ay]

pue juoIy oy} Aq ponssi sdo-0Io1ur JO IQUIN N

AHATHOHY SLANYHHLNT MH
ATANHTHANN dHILHOdV dHYILAIY d'TH
AVAHdHL dALTVHNA M'TO NdO

HALLDV AVHYHL UNO dHALTVHNO MTO NdO
ANV SLSISSV 4HH.LO

ANV LSISSV dd
ONIHHAHO AHOWHIN SHVHTO UNITHOVIN
OINS'SHVHTD UNITHOVIN

LNNOD'SHVHTO UHNIHOVIN

ANV SHTOAD AHHAODHY DSTIN LNI
SLOTS HUILHY dHULLAY SdON

ANV dHNSST 5401

uonydriosa(g

oureN JUoAT]

suordiIosep YHm X(06.L-6T 100 [9U] UI d[qR[IRAR SHUIAD ddURMLIOjIdd N JO) Pasn Jo ISIT :1°9 9[qe],

145

We use the performance counters listed in Table 6.1.These counters are selected based on
their relevance to speculative execution vulnerabilities shown by previous research [34, 158,

174] as well as Intel’s performance monitoring tools [45].

6.4.6 Reward Function

The reward function is often seen as the most critical component of the RL frameworks since
it steers the agent behavior. We address the challenge C2 by carefully designing the reward
function.

The instruction sequences selected by the agent are executed on the CPU, and the CPU’s
behavior is monitored using hardware performance counters. The counters provide feedback

on the speculative execution and microarchitectural effects of the instructions.

bad speculation + observed byte leakage

Reward =

. : (6.1)
mstruction count

The reward function evaluates the performance counter data collected during instruction
execution. It assigns rewards based on the presence of speculative execution anomalies,
deviations from expected behavior, or other indicators of potential vulnerabilities.

while optimizing for larger amounts of bad speculation while the code executes as well
as speculative execution of following instructions.

The reward calculation incorporates a cap to prevent excessive penalties or rewards,
promoting stable training. The reward values are scaled to maintain balance between per-

formance and security goals.

Testing for Bad Speculation According to Intel’s documentation [46], “bad speculation”
typically results from branch mispredictions, machine clears and, in rare cases, self-modifying
code. It occurs when a processor fills the instruction pipeline with incorrect operations
due to mispredictions. This process leads to wasted cycles, as speculative micro-operations

(uops) are discarded if predictions are incorrect, forcing the processor to recover and restart.

146

Although bad speculation is primarily a concern for performance, it also has important
security implications. Microarchitectural attacks exploit transient states created by bad
speculation. During speculation, the CPU may access sensitive data or load it into the
cache, even though the operations will eventually be discarded. These transient states,
particularly in cache memory, create opportunities for attackers to infer sensitive data—such
as encryption keys—by analyzing cache behaviors and measuring access times.

Intel’s formula for quantitatively measurement of bad speculation for a CPU thread is as

Bad Speculation = UOPS_ISSUED.ANY — UOPS_RETIRED.RETIRE_SLOTS (62)
6.2

+(4 x INT_MISC.RECOVERY_CYCLES),

which we use in our reward function.

If there is an exceptions detected during the performance counter tests, we terminate
the episode, set the reward to -10 and reset the state. We select this number arbitrarily
to differentiate insturctions sequence with no bad speculation vs instruction sequences that
does not execute at all. Negative reward discourages the agent from generating exceptions.
Note that, handling the exceptions is also possible, but it complicates the reward calculation.

Therefore, we leave it for future work.

Testing for Observable Byte Leakage If the performance counter tests executes suc-
cessfully, we check if the generated instruction sequence results in observable byte leakage
due to speculative execution. Our testing flow for detecting observable byte leakage is shown
in Figure 6.2.

We, first, place the instruction sequence in a template assembly file and run it N times
using rep directive. Similar to performance counter tests, we use predefined addresses for
memory operands and preserve the contents of the general purpose registers in the stack.
Then, we execute a comparison operation based on the instructions types and registers used
in the generated sequence. If there are multiple types of registers used in the sequence,

we select a different comparison instruction specific to that register type. We repeat the

147

test flow for each register type used in the sequence. This way we avoid false negatives
due to the register type mismatch. After the comparison, we execute a conditional branch
instruction (jump if equal-JE) which is followed by cache accesses to an array that encode
a predefined sequence of bytes to the cache state. We then measure the access time to the
array using Flush+Reload [241] to decode the bytes and check if it how much it matches
with the encoded bytes. If there is any match, we repeat the same test, this time with
the opposite branch condition (jump if not equal-JNE). If there is a match in this case, we
consider it as an observable byte leakage.

Note that, most of the generated seqences fail either in the first or second step of the
leakage test. For the remaining sequences that passed the first two tests, we run the same
two test after inserting 1fence before the branch instruction. If the leakage disappears after
adding 1fence, we consider it as a successful sequence that causes observable byte leakage
through bad speculation. Note that, unlike Spectre-BHT [105], we do not train the branch
predictor in the test flow so the root cause of the bad speculation would not be the branch
mispredictions unless the generated sequence has the branch predictor training itself using
branch instructions.

We repeat the test flow for each register type used in the sequence. This way we avoid
false negatives due to the register type mismatch. The number of successfully decoded bytes
are fed into the reward function as the observable byte leakage. Since the byte leakage is a
more direct signal of the vulnerability, we assign a higher weight to it in the reward function.

If an exception is detected at this stage, the environment resets to a safe state, logs the
exception. Only the byte leakage part of the reward is set as zero, yet the bad speculation

part is calculated as usual.

148

inst_sequence

\ 4
%rep N
inst_sequence
%endrep
COMPARISON
Y [P
: : exit exit
exit exit
CAFHE—ENCODING CAFHE—ENCODING CACHE _ENCODING| | [CACHE _ENCODING
exit: exit: e LT
RET RET exit: exit:
RET RET
v v v v
F+R F+R F+R F+R
true true false
Leakage>0 > — Leakage>0 > - -
false fallse true false true
L |
v v
success

fail

Figure 6.2: Test flow for detecting observable byte leakage.

149

6.5 Experiments

Experiment Setup We run the experiments on a machine with an Intel Core 19-7900X
CPU @ 3.30GHz with a Skylake-X microarchitecture. The machine has 10 physical cores
and 20 threads. The OS running on the system is Ubuntu 22.04.5 LTS with the Linux kernel
v6.5.0-44-generic. We use glib v2.72.4, nasm v2.15.05, gcc v11.4.0 for compiling and test-
ing the generated assembly files; PyTorch v2.2.1, Stable Baselines3 v2.2.1 and Gymnasium
v0.29.1 for custom RL environment and training the RL agent.

We keep all available kernel mitigations against CPU vulnerabilities enabled. The overview

of the experiment setup is shown in Figure 6.3.

'» RLagenttraining : GPU

Figure 6.3: Experiment Setup

The RL agent training and the local inference for text embedding model is done on the
GPU clusters with an NVIDIA TITAN Xp, GeForce GTX TITAN X, and two GeForce
GTX 1080Ti. For local inference, we use NV-Embed-v2 [114, 145] embedding model which
ranks the highest at MTEB [147] among the open-source embedding models at the time
this work has been done. For remote inference, we use OpenAl’s text-embedding-3-small

model thru APT access. Due to GPU memory limits and the complexity of parallel inference

150

management, we use the parallel core testing only with OpenAI API.

After filtering all illegal instructions from [5], we are left with 12598 instructions that
belongs to 74 sets. The largest set has 2192 instructions and the maximum number of
possible operands per instruction is 7. These numbers determine the size of the action space
for the RL agent.

To enhance training speed, the framework is parallelized across multiple CPU cores,
allowing multiple sequences to be evaluated simultaneously. This parallelization reduces
the latency in training and accelerates the agent’s learning process. Although the last level
cache is shared among the cores, each process accesses its own distinct memory region which
does not include any shared libraries or data. Therefore the cache intereference among the

processes is minimal.

6.6 Discovered Transient Execution Mechanisms

6.6.1 Masked Exceptions

[34,174] demonstrated that FP assists due to denormal numbers cause transient execution
of the following instructions. Our RL agent generated instruction sequences that causes
observable byte leakage through transient execution without generating any ucode assists,
faults or interrupts. Listing 6.2 shows an example of such instruction sequence.

After careful analysis, we noticed that the sequence indeed causes a FP exception, but
the exception is masked by the processor and the program execution is uninterrupted.
Previous works reported transient execution with page faults, device-not-available [119,

142,195] which requires exception handling and ucode assists such as FP assists [34, 174]
which requires specially crafted inputs.

Transient execution through masked FP exceptions has not been previously reported in

the literature which makes it a new discovery by our RL agent.

151

[

generated_assembly_function:

s hrep 500

FLD [x]
hendrep
FCOMI st0, stil
JE exit:
MOVZX rax, [%rdil
rax, 10
rax, [rsi+rax]
exit:
RET

Listing 6.1: The instruction sequence that triggers masked FP exception

6.6.2 Transitions Between MMX and x87

FP exceptions by-default are masked and do not cause a trap and the program contin-
ues execution. However, starting from glibc v2.2 it is possible to unmask them using
feenableexcept functions from fenv.h library. This function allows the FP exceptions
to cause a trap and the program to be interrupted.

After the results given in Section 6.6.1, we run another training session with the same
configuration but with the feenableexcept function enabling FE_INVALID, FE DIVBYZERO,
FE_OVERFLOW, FE_UNDERFLOW, and FE_INEXACT bits of the excepts argument.

With this configuration, the RL agent was still able to generate instruction sequences
that cause observable byte leakage through transient execution without generating any ucode
assists, faults or interrupts. Listing 6.2 shows an example of such instruction sequence.

After simplying the instruction sequence, we observed that the transient execution is
caused by a FP exception that is generated by the FCOMIP instruction. However, the MMX
instruction before the FCOMIP instruction causes the exception to get lost. We use the
feenableexcept function to unmask FP exceptions, yet the exception generated in the
processor gets cleared by the PSUBQ instruction. Eventhough the exception is cleared, the
following instructions are executed speculatively and the transient execution is observed.

Note that the comparison instruction VCMPPD does not have any dependency on the previous

152

[

generated_assembly_function:

s hrep 500

VERW CX
STMXCSR [R15]

VPBLENDMB YMM2 {K3}{z}, YMM4, YMM1
PSUBQ MM2, [R15]

VMOVSD XMM3 {K3}, XMM2, XMM3

FCOMIP ST4
hendrep
VCMPPD K3, ZMM1, ZMM4, 2
exit

MOVZX rax, [%rdil
rax, 10
rax, [rsi+rax]

exit:

RET

Listing 6.2: A generated assembly instruction sequence that has MMX-x87 transition

instructions, yet it is still executed speculatively and removing the AVX instructions from
the sequence does not break the transient execution.

In Intel documentations [88], it is advised that after the MMX instructions, EMMS instruc-
tion should be used to clear the FPU state to prevent “undefined behavior”. We verified
that adding an EMMS instruction after the MMX instruction makes the FP exception cause

a trap.

6.7 Discussion

Traditional approaches to vulnerability discovery, such as fuzzing and static analysis, often
fail to efficiently explore the vast instruction space or detect vulnerabilities requiring specific
conditions. RL’s feedback-driven approach enables adaptive learning from real-time interac-
tions with the processor, prioritizing sequences likely to expose vulnerabilities. Compared to
other Al methods, RL better fits to this context than the supervised learning, which relies on

labeled data, and unsupervised learning, which lacks dynamic interaction and adaptation.

153

RL iteratively refines its strategies using the reward signal, balancing exploration of new
sequences with focus on promising ones to uncover vulnerabilities. Among RL algorithms,
PPO is particularly well-suited for this task. PPQO’s clipped objective function ensures stable,
efficient policy updates in sparse and noisy reward landscapes. Unlike value-based methods
like Q-learning, PPO handles high-dimensional action spaces effectively. It also improves on
earlier policy-gradient methods like TRPO, offering similar sample efficiency with reduced
computational overhead.

In this work, we did not consider the impact of other system configurations such as
Hyperthreading, TSX, SGX, AVX, HW prefetch, previous mitigations, Kernel Samepage
Merging, ASLR, page table layout, etc. on the pArch vulnerabilities. We leave this for
future work.

Within the search space, only a small fraction of instruction sequences would indicate
a vulnerability assuming the design went through a thorough security review previously.
Therefore, reward signal is sparse and delayed, making it challenging for the agent to learn

the optimal policy.

6.8 Conclusion

In this study, we developed an RL framework tailored for the detection of vulnerabilities
within processor microarchitecture. We demonstrated that our RL agent can detect previ-
ously discovered vulnerabilities and discover unknown mechanisms of transient execution.
Specifically, our agent discovered that observable transient execution can be triggered by
masked exceptions which do not require any ucode assists or fault handling. Moreover, the
transition between different instruction set extensions cause hardware exceptions to get lost

meanwhile causing observable transient execution.

154

Chapter 7

Conclusion

Microarchitectural attacks pose a significant and evolving threat to modern computing sys-
tems. In this work, we emphasize the growing importance of automation for the detection,
mitigation, and discovery of such vulnerabilities. Leveraging new machine learning technolo-
gies makes this automation feasible, offering enhanced adaptability and scalability compared
to traditional methods.

Our analysis highlights the trade-offs between traditional rule-based methods and ML-
based approaches. Rule-based methods excel in scenarios involving known vulnerabilities
with well-defined and fixed mechanisms. However, ML-based approaches demonstrate su-
perior scalability and effectiveness when addressing unknown vulnerabilities or those with
flexible attack mechanisms. In many cases, a hybrid approach that combines both methods
is necessary to address overlapping challenges effectively.

The design of these automated tools must incorporate realistic threat models to ensure
their practical applicability. Unrealistic assumptions can lead to false positives or false nega-
tives, undermining the tool’s reliability. Defining an appropriate threat model is particularly
challenging, as attackers’ capabilities vary significantly across systems and configurations.
Furthermore, generic mitigations may introduce excessive overhead or fail to provide ade-

quate protection, necessitating careful consideration of system-specific constraints.

155

As automated detection and mitigation of microarchitectural vulnerabilities advance, we
anticipate broader adoption of these tools in integration and development pipelines. Looking
forward, we envision their deployment in endpoint devices, enabling tailored mitigations that
cater to the specific requirements and configurations of individual systems. This approach
could significantly enhance the security posture of future computing environments while

balancing performance and protection needs.

156

Bibliography

1]
2]

Llama perplexity ai. https://1lama.perplexity.ai/. Accessed: 2023-08-03.

npm-stat: download statistics for npm packages. https://npm-stat.com/charts.
html?package=aes-js&from=2013-08-03&t0=2023-08-03. Accessed: 2023-08-03.

Openai playground. https://platform.openai.com/playground. Accessed: 2023-
08-03.

Vertex ai. https://cloud.google.com/vertex—-ai. Accessed: 2023-08-03.

Andreas Abel and Jan Reineke. uops.info: Characterizing latency, throughput, and
port usage of instructions on intel microarchitectures. In ASPLOS, ASPLOS 19, pages
673-686, New York, NY, USA, 2019. ACM.

Onur Aciigmez, Cetin Kaya Kog, and Jean-Pierre Seifert. Predicting secret keys via
branch prediction. In Topics in Cryptology—CT-RSA 2007: The Cryptographers’ Track
at the RSA Conference 2007, San Francisco, CA, USA, February 5-9, 2007. Proceed-
ings, pages 225-242. Springer, 2006.

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turn-
ing your weakness into a strength: Watermarking deep neural networks by backdooring.
In Proceedings of the 27th USENIX Conference on Security Symposium, SEC’18, page
1615-1631, USA, 2018. USENIX Association.

Andrew Adiletta, Caner Tol, and Berk Sunar. Leapfrog: The rowhammer instruction
skip attack. arXw preprint arXiv:2404.07878, 2024.

Andrew J. Adiletta, M. Caner Tol, Yarkin Dor6z, and Berk Sunar. Mayhem: Tar-
geted corruption of register and stack variables. In Proceedings of the 2024 ACM Asia
Conference on Computer and Communications Security, 2024.

Baleegh Ahmad, Shailja Thakur, Benjamin Tan, Ramesh Karri, and Hammond
Pearce. Fixing hardware security bugs with large language models. arXiv preprint
arXiv:2302.01215, 2023.

Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida Garcia,
and Nicola Tuveri. Port contention for fun and profit. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 870-887. IEEE, 2019.

157

https://llama.perplexity.ai/
https://npm-stat.com/charts.html?package=aes-js&from=2013-08-03&to=2023-08-03
https://npm-stat.com/charts.html?package=aes-js&from=2013-08-03&to=2023-08-03
https://platform.openai.com/playground
https://cloud.google.com/vertex-ai

[12]
[13]

[18]

[23]

Rohan Anil and et al. Palm 2 technical report, 2023.

Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi,
and Shiyi Wei. Decomposition instead of self-composition for proving the absence of

timing channels. ACM SIGPLAN Notices, 52(6):362-375, 2017.

Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors in deep learning models.
arXw preprint arXw:2005.03823, 2020.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Jiawang Bai, Baoyuan Wu, Yong Zhang, Yiming Li, Zhifeng Li, and Shu-Tao Xia.
Targeted attack against deep neural networks via flipping limited weight bits. arXiv
preprint arXiw:2102.10496, 2021.

Marco Baldi, Alessandro Barenghi, Sebastian Bitzer, Patrick Karl, Felice Manganiello,
Alessio Pavoni, Gerardo Pelosi, Paolo Santini, Jonas Schupp, Freeman Slaughter, et al.
Cross-codes and restricted objects signature scheme. In 2024 Spring Fastern Sectional
Meeting. AMS, 2023.

Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In 2008 IEEE Symposium on
Security and Privacy (sp 2008), pages 387-401. IEEE, 2008.

Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel, and
Engin Kirda. Scalable, behavior-based malware clustering. In NDSS, volume 9, pages
8-11. Citeseer, 2009.

Digital Bazaar. Forge. https://github.com/digitalbazaar/forge, 2023. Accessed:
2023-07-19.

Ward Beullens. Mayo: practical post-quantum signatures from oil-and-vinegar
maps. In International Conference on Selected Areas in Cryptography, pages 355-376.
Springer, 2021.

Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro
Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. Smotherspectre: exploit-
ing speculative execution through port contention. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 785-800, 2019.

Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, John M
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-kyber: a cca-
secure module-lattice-based kem. In 2018 IEEE Furopean Symposium on Security and
Privacy (EuroSE&P), pages 353-367. IEEE, 2018.

158

https://github.com/digitalbazaar/forge

[24]

[25]

[26]

[28]

[31]

[32]

[33]

Daniel P Bovet and Marco Cesati. Understanding the Linux Kernel: from 1/O ports
to process management. 7 O’Reilly Media, Inc.”, 2005.

Jakub Breier and Xiaolu Hou. How practical are fault injection attacks, really? IEEFE
Access, 10:113122-113130, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing
systems, 33:1877-1901, 2020.

Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van Bulck,
and Yuval Yarom. Fallout: Leaking data on meltdown-resistant cpus. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 2019.

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. A systematic
evaluation of transient execution attacks and defenses. In 28th USENIX Security
Symposium (USENIX Security 19), pages 249-266, 2019.

Chandler Carruth. Rfc: Speculative load hardening (a spectre variant 1 mitigation),
2018.

Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall, Dean Tullsen, Deian Stefan,
Tamara Rezk, and Gilles Barthe. Constant-time foundations for the new spectre era. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 913-926, 2020.

Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and Deian Stefan.
Sok: Practical foundations for software spectre defenses. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 666-680. IEEE, 2022.

Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and Deian Stefan.
SoK: Practical Foundations for Spectre Defenses. 2022.

Anirban Chakraborty, Sarani Bhattacharya, Sayandeep Saha, and Debdeep
Mukhopadhyay. Explframe: Exploiting page frame cache for fault analysis of block
ciphers. In 2020 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 1303-1306, 2020.

Anirban Chakraborty, Nimish Mishra, and Debdeep Mukhopadhyay. Shesha: Multi-
head microarchitectural leakage discovery in new-generation intel processors. arXiv
preprint arXiw:2406.06034, 2024.

159

[35]

Yiannis Charalambous, Norbert Tihanyi, Ridhi Jain, Youcheng Sun, Mohamed Amine
Ferrag, and Lucas C Cordeiro. A new era in software security: Towards self-
healing software via large language models and formal verification. arXiv preprint
arXiv:2305.14752, 2023.

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yingian Zhang, Zhiqiang Lin, and Ten H
Lai. Sgxpectre: Stealing intel secrets from sgx enclaves via speculative execution. In
2019 IEEE European Symposium on Security and Privacy (EuroSE&P), pages 142-157.
IEEE, 2019.

Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Proflip: Targeted tro-
jan attack with progressive bit flips. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 7718-7727, October 2021.

Shing Hing William Cheng, Chitchanok Chuengsatiansup, Daniel Genkin, Dallas Mc-
Neil, Toby Murray, Yuval Yarom, and Zhiyuan Zhang. Evict+ spec+ time: Exploiting

out-of-order execution to improve cache-timing attacks. Cryptology ePrint Archive,
2024.

Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detection of cache-based
side-channel attacks using hardware performance counters. Applied Soft Computing,
49:1162-1174, 2016.

Edward Chou, Florian Tramer, and Giancarlo Pellegrino. Sentinet: Detecting localized
universal attacks against deep learning systems. In 2020 IEEE Security and Privacy
Workshops (SPW), pages 48-54. IEEE, 2020.

Joseph Clements and Yingjie Lao. Hardware trojan attacks on neural networks. arXiv
preprint arXiv:1806.05768, 2018.

Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec Wolman,
and Onur Mutlu. Are we susceptible to rowhammer? an end-to-end methodology for
cloud providers. In 2020 IEEE Symposium on Security and Privacy (SP), pages 712—
728. IEEE, 2020.

Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. Exploiting cor-
recting codes: On the effectiveness of ecc memory against rowhammer attacks. In 2019
IEEE Symposium on Security and Privacy (SP), pages 55-71. IEEE, 2019.

OpenSSL Technical Committee. Spectre and meltdown attacks against openssl. Pub-
lished on OpenSSL Blog: 05/13/2022.

Intel Corporation. Perfmon. https://github.com/intel/perfmon/tree/main. Ac-
cessed: 2024-11-13.

Intel Corporation. Top-Down Microarchitecture Analysis Method, 2023. Accessed:
2024-11-13.

160

https://github.com/intel/perfmon/tree/main

[47]

[56]

Jacson Rodrigues Correia-Silva, Rodrigo F Berriel, Claudine Badue, Alberto F
de Souza, and Thiago Oliveira-Santos. Copycat cnn: Stealing knowledge by persuading
confession with random non-labeled data. In 2018 International Joint Conference on
Neural Networks (IJCNN), pages 1-8. IEEE, 2018.

T. Avgerinos D. Brumley, 1. Jager and E. J. Schwartz. Bap: A binary analysis platform,
2011.

Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano Giuf-
frida, and Kaveh Razavi. Smash: Synchronized many-sided rowhammer attacks from
javascript. In 30th { USENIX} Security Symposium ({ USENIX} Security 21), 2021.

Kemal Derya, M Caner Tol, and Berk Sunar. Fault+ probe: A generic rowhammer-
based bit recovery attack. arXiv preprint arXiv:2406.06943, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2019.

Steven HH Ding, Benjamin CM Fung, and Philippe Charland. Asm2vec: Boosting
static representation robustness for binary clone search against code obfuscation and
compiler optimization. In 2019 IEEE Symposium on Security and Privacy (SP), pages
472-489. IEEE, 2019.

Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. {Prime+ Abort}:
A {Timer-Free}{High-Precision} 13 cache attack using intel {TSX}. In 26th USENIX
Security Symposium (USENIX Security 17), pages 51-67, 2017.

Goran Doychev, Boris Kopf, Laurent Mauborgne, and Jan Reineke. Cacheaudit: A
tool for the static analysis of cache side channels. ACM Transactions on information
and system security (TISSEC), 18(1):1-32, 2015.

Michael Fahr Jr, Hunter Kippen, Andrew Kwong, Thinh Dang, Jacob Lichtinger, Dana
Dachman-Soled, Daniel Genkin, Alexander Nelson, Ray Perlner, Arkady Yerukhi-
movich, et al. When frodo flips: End-to-end key recovery on frodokem via rowhammer.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 979-993, 2022.

William Fedus, Ian J. Goodfellow, and Andrew M. Dai. Maskgan: Better text gen-
eration via filling in the _______. In 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model
for programming and natural languages. arXiv preprint arXiv:2002.08155, 2020.

Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, Zhenfei

161

[60]

[61]

Zhang, et al. Falcon: Fast-fourier lattice-based compact signatures over ntru. Sub-
mission to the NIST’s post-quantum cryptography standardization process, 36(5):1-75,
2018.

Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen, Onur Mutlu,
Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Trrespass: Exploiting the many
sides of target row refresh. In 2020 IEEE Symposium on Security and Privacy (SP),
pages 747-762. IEEE, 2020.

Siddhant Garg, Adarsh Kumar, Vibhor Goel, and Yingyu Liang. Can adversarial
weight perturbations inject neural backdoors? CoRR, abs/2008.01761, 2020.

Spandan Garg, Roshanak Zilouchian Moghaddam, and Neel Sundaresan. Rapgen: An
approach for fixing code inefficiencies in zero-shot. arXiv preprint arXiw:2306.17077,
2023.

Gartner. Emerging tech: Generative ai code assistants are becoming essential to de-
veloper experience, 2023.

Ghidra. Ghidra software reverse engineering (sre) framework, 2023.

Jacob Gildenblat and contributors. Pytorch library for cam methods. https:
//github.com/jacobgil/pytorch-grad-cam, 2021.

lan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 26722680, 2014.

[an J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiw:1412.6572, 2014.

grsecurity. Teardown of a failed linux Its spectre fix, 2019. Avail-
able at: https://grsecurity.net/teardown_of_a_failed_linux_lts_spectre_
fix (Accessed: 2023-08-02).

Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli
O’Connell, Wolfgang Schoechl, and Yuval Yarom. Another flip in the wall of rowham-
mer defenses. In 2018 IEEE Symposium on Security and Privacy (SP), pages 245-261.
IEEE, 2018.

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+ Flush:
a fast and stealthy cache attack. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 279-299. Springer, 2016.

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template attacks: Au-
tomating attacks on inclusive {Last-Level} caches. In 2/th USENIX Security Sympo-
sium (USENIX Security 15), pages 897-912, 2015.

162

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam
https://grsecurity.net/teardown_of_a_failed_linux_lts_spectre_fix
https://grsecurity.net/teardown_of_a_failed_linux_lts_spectre_fix

[71]

[80]
[81]

[82]

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulner-
abilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733,
2017.

Marco Guarnieri, Boris Kopf, José F Morales, Jan Reineke, and Andrés Sanchez. Spec-
tector: Principled detection of speculative information flows. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 1-19. IEEE, 2020.

Berk Gulmezoglu, Andreas Zankl, M Caner Tol, Saad Islam, Thomas Eisenbarth, and
Berk Sunar. Undermining user privacy on mobile devices using ai. In Proceedings of the

2019 acm asia conference on computer and communications security, pages 214-227,
2019.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. In Advances in neural information
processing systems, pages 5767-5777, 2017.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text
generation via adversarial training with leaked information. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

Shengjian Guo, Yueqi Chen, Peng Li, Yueqgiang Cheng, Huibo Wang, Meng Wu, and
Zhiqgiang Zuo. Specusym: Speculative symbolic execution for cache timing leak detec-
tion. arXw preprint arXiw:1911.00507, 2019.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing
common c language errors by deep learning. In Proceedings of the aaai conference on
artificial intelligence, volume 31, 2017.

Hasan Hassan, Yahya Can Tugrul, Jeremie S Kim, Victor Van der Veen, Kaveh Razavi,
and Onur Mutlu. Uncovering in-dram rowhammer protection mechanisms: A new
methodology, custom rowhammer patterns, and implications. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 1198-1213,
2021.

Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali Chakrabarti, and Deliang Fan.
Defending and harnessing the bit-flip based adversarial weight attack. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14095-14103, 2020.

Hex-Rays. Ida pro, 2023.

Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cristiano Giuffrida, and Tudor
Dumitras. Terminal brain damage: Exposing the graceless degradation in deep neu-
ral networks under hardware fault attacks. In 28th { USENIX} Security Symposium
({USENIX} Security 19), pages 497-514, 2019.

Jann Horn. speculative execution, variant 4: speculative store bypass, 2018.

163

[83]

[84]

[90]

[91]

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks. Advances in meural information processing systems, 29,
2016.

Yerlan Idelbayev. Proper ResNet implementation for CIFAR10/CIFAR100 in PyTorch.
https://github.com/akamaster/pytorch_resnet_cifari10, 2019. Accessed: 2021-
05-26.

Fedor Indutny. Bn.js: Bignum in pure javascript. https://github.com/indutny/bn.
js/. Accessed: 2023-08-03.

Fedor Indutny. Elliptic. https://github.com/indutny/elliptic, 2023. Accessed:
2023-07-19.

Intel. Guidelines for mitigating timing side channels against cryptographic implemen-
tations, v2.1, 2022-06-29.

Intel Corporation. Intel 64 and ia-32 architectures software developer’s manual: Com-
bined volumes 1, 2a, 2b, 2c, 2d, 3a, 3b, 3c, 3d, and 4, 2023. Accessed: 2024-11-15.

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S $ a: A shared cache attack
that works across cores and defies vim sandboxing—and its application to aes. In 2015
IEEE Symposium on Security and Privacy, pages 591-604. IEEE, 2015.

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. MASCAT: Stopping microar-
chitectural attacks before execution. IACR Cryptol. ePrint Arch., 2016:1196, 2016.

Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gulmezoglu, Thomas
Eisenbarth, and Berk Sunar. SPOILER: Speculative load hazards boost rowhammer
and cache attacks. In 28th USENIX Security Symposium (USENIX Security 19), pages
621-637, Santa Clara, CA, August 2019. USENIX Association.

Saad Islam, Koksal Mus, Richa Singh, Patrick Schaumont, and Berk Sunar. Signa-
ture correction attack on dilithium signature scheme. In 2022 IEEE 7th FEuropean
Symposium on Security and Privacy (EuroS€P), pages 647-663. IEEE, 2022.

Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt, Peter Schwabe,
Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar. “they’re not that hard to
mitigate”: What cryptographic library developers think about timing attacks. In 2022
IEEE Symposium on Security and Privacy (SP), pages 632-649. IEEE, 2022.

Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn Gunter, and Kaveh Razavi.
Blacksmith: Scalable rowhammering in the frequency domain. In 2022 IEEE Sympo-
sium on Security and Privacy (SP), pages 716-734. IEEE, 2022.

Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. Prada: protecting
against dnn model stealing attacks. In 2019 IEEE European Symposium on Security
and Privacy (EuroS€P), pages 512-527. IEEE, 2019.

164

https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/indutny/bn.js/
https://github.com/indutny/bn.js/
https://github.com/indutny/elliptic

[96]

[101]

[102]

103]

[104]

[105]

[106]

Rahul Kande, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Shailja
Thakur, Ramesh Karri, and Jeyavijayan Rajendran. Llm-assisted generation of hard-
ware assertions. arXiv preprint arXiw:2306.14027, 2023.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of
gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196,
2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4401-4410, 2019.

Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry Ev-
tyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Safespec: Banishing the spec-
tre of a meltdown with leakage-free speculation, 2018.

Jeremie S Kim, Minesh Patel, A Giray Yaglkci, Hasan Hassan, Roknoddin Azizi,
Lois Orosa, and Onur Mutlu. Revisiting rowhammer: An experimental analysis of
modern dram devices and mitigation techniques. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pages 638-651. IEEE,
2020.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors. ACM SIGARCH Computer
Architecture News, 42(3):361-372, 2014.

Vladimir Kiriansky and Carl Waldspurger. Speculative buffer overflows: Attacks and
defenses, 2018.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos
Munoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro von Werra, and Harm de Vries. The stack: 3 tb of
permissively licensed source code. Preprint, 2022.

Paul Kocher. Spectre mitigations in microsoft’s c¢/c++ compiler.
Retrieved July 27, 2023 from https://www.paulkocher.com/doc/
MicrosoftCompilerSpectreMitigation.html, 2018.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre attacks:
Exploiting speculative execution. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 1-19. IEEE, 2019.

Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In Advances in Cryptology—CRYPTO’96: 16th Annual International
Cryptology Conference Santa Barbara, California, USA August 18-22, 1996 Proceed-
ings 16, pages 104-113. Springer, 1996.

165

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. Spectre returns! speculation attacks using the return stack buffer.
In 12th USENIX Workshop on Offensive Technologies (WOOT 18), Baltimore, MD,
August 2018. USENIX Association.

Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N. Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. Speccfi: Mitigating spectre attacks using cfi
informed speculation, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images, 2009.

Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. Rambleed: Reading
bits in memory without accessing them. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 695-711. IEEE, 2020.

Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lample.
Unsupervised translation of programming languages. arXiw preprint arXiw:2006.03511,
2020.

Adam Langley. ctgrind: Checking that functions are constant time
with valgrind. https://github.com/agl/ctgrind, 2013. Available:
https://github.com/agl/ctgrind.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents.
In International conference on machine learning, pages 1188-1196, 2014.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi,
Bryan Catanzaro, and Wei Ping. Nv-embed: Improved techniques for training llms as
generalist embedding models. arXiw preprint arXiv:2405.17428, 2024.

Jingtao Li, Adnan Siraj Rakin, Zhezhi He, Deliang Fan, and Chaitali Chakrabarti.
Radar: Run-time adversarial weight attack detection and accuracy recovery. arXiv
preprint arXiw:2101.08254, 2021.

Jingtao Li, Adnan Siraj Rakin, Yan Xiong, Liangliang Chang, Zhezhi He, Deliang Fan,
and Chaitali Chakrabarti. Defending bit-flip attack through dnn weight reconstruction.
In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1-6. IEEE,
2020.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Jurafsky. Ad-
versarial learning for neural dialogue generation. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pages 2157-2169, Copenhagen,
Denmark, September 2017. Association for Computational Linguistics.

Yu Li, Min Li, Bo Luo, Ye Tian, and Qiang Xu. Deepdyve: Dynamic verification
for deep neural networks. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 101-112, 2020.

166

https://github.com/agl/ctgrind

[119]

[120]

[121]

[129]

123]

[124]

[125]

[126]

[127]

[128]

[129]

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown: Reading kernel memory from user space. In 27th USENIX
Security Symposium (USENIX Security 18), 2018.

Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster, Misiker Tadesse Aga,
Clémentine Maurice, and Daniel Gruss. Nethammer: Inducing rowhammer faults
through network requests. In 2020 IEEE Furopean Symposium on Security and Privacy

Workshops (EuroSE&PW), pages 710-719. IEEE, 2020.

Jameson Little. base64-js. https://github.com/beatgammit/base64-js, 2023. Ac-
cessed: 2023-07-19.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-level cache
side-channel attacks are practical. In 2015 IEEE symposium on security and privacy,
pages 605-622. IEEE, 2015.

Jiaming Liu, Chengzhang Li, Peng Ouyang, Jiajia Liu, and Chong Wu. Interpreting
the prediction results of the tree-based gradient boosting models for financial distress

prediction with an explainable machine learning approach. Journal of Forecasting,
42(5):1112-1137, 2023.

Qi Liu, Wujie Wen, and Yanzhi Wang. Concurrent weight encoding-based detection for
bit-flip attack on neural network accelerators. In Proceedings of the 39th International
Conference on Computer-Aided Design, pages 1-8, 2020.

Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. Fault injection attack on deep
neural network. In 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 131-138. IEEE, 2017.

Yingqi Liu, Shiging Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang,
and Xiangyu Zhang. Trojaning attack on neural networks. In 25th Annual Network
and Distributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society, 2018.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqgi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach, 2019.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. Acm sigplan no-
tices, 40(6):190-200, 2005.

Mulong Luo, Wenjie Xiong, Geunbae Lee, Yueying Li, Xiaomeng Yang, Amy Zhang,
Yuandong Tian, Hsien-Hsin S. Lee, and G. Edward Suh. Autocat: Reinforcement
learning for automated exploration of cache-timing attacks. In 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), pages 317—
332, 2023.

167

https://github.com/beatgammit/base64-js

[130]

131]

[132]

[133]

[134]

[135]

[136]
137]

[138]

[139]

[140]

[141]

[142)

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(Nov):2579-2605, 2008.

Giorgi Maisuradze and Christian Rossow. ret2spec. Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, Jan 2018.

Andrea Mambretti, Matthias Neugschwandtner, Alessandro Sorniotti, Engin Kirda,
William Robertson, and Anil Kurmus. Speculator: a tool to analyze speculative exe-
cution attacks and mitigations. In Proceedings of the 35th Annual Computer Security
Applications Conference, pages 747-761, 2019.

Andrea Mambretti, Alexandra Sandulescu, Alessandro Sorniotti, Wil Robertson, Engin
Kirda, and Anil Kurmus. Bypassing memory safety mechanisms through speculative
control flow hijacks. arXiv preprint arXiv:2003.05503, 2020.

Daniel J Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cos-
min Paduraru, Edouard Leurent, Shariq Igbal, Jean-Baptiste Lespiau, Alex Ahern,
et al. Faster sorting algorithms discovered using deep reinforcement learning. Nature,
618(7964):257-263, 2023.

Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Roberto Baldoni, and
Leonardo Querzoni. Safe: Self-attentive function embeddings for binary similarity. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 309-329. Springer, 2019.

Phoronix media. Open-source, automated benchmarking, 2021.

Szymon Migacz. 8-bit inference with TensorRT. NVIDIA GPU Technology Conference,
2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiw:1301.3781, 2013.

Tomé4s Mikolov, Martin Karafidt, Lukés Burget, Jan Cernocky, and Sanjeev Khudan-
pur. Recurrent neural network based language model. In Eleventh annual conference
of the international speech communication association, 2010.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In Proceedings of the
26th International Conference on Neural Information Processing Systems - Volume 2,
NIPS’13, page 3111-3119, Red Hook, NY, USA, 2013. Curran Associates Inc.

Daniel Moghimi. Downfall: Exploiting speculative data gathering. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 7179-7193, Anaheim, CA, August
2023. USENIX Association.

Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz. Medusa: Microar-
chitectural data leakage via automated attack synthesis. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1427-1444, 2020.

168

[143]

[144]

[145]

[146]

[147)

148

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger. TPM-FAIL:
TPM meets Timing and Lattice Attacks. In 29th USENIX Security Symposium
(USENIX Security 20), Boston, MA, August 2020. USENIX Association.

Richard Moore. aes-js. https://github.com/ricmoo/aes-js, 2023. Accessed: 2023-
07-19.

Gabriel de Souza P Moreira, Radek Osmulski, Mengyao Xu, Ronay Ak, Benedikt
Schifferer, and Even Oldridge. Nv-retriever: Improving text embedding models with
effective hard-negative mining. arXiv preprint arXiv:2407.15831, 2024.

Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel. Axiomatic
hardware-software contracts for security. In Proceedings of the 49th Annual Interna-
tional Symposium on Computer Architecture, ISCA 22, page 72-86, New York, NY,
USA, 2022. Association for Computing Machinery.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. Mteb: Massive
text embedding benchmark. arXiv preprint arXiw:2210.07316, 2022.

Koksal Mus, Yarkin Doréz, M Caner Tol, Kristi Rahman, and Berk Sunar. Jolt: Re-
covering tls signing keys via rowhammer faults. In 2023 IEEE Symposium on Security
and Privacy (SP), pages 1719-1736. IEEE, 2023.

Koksal Mus, Saad Islam, and Berk Sunar. Quantumhammer: a practical hybrid attack
on the luov signature scheme. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 1071-1084, 2020.

Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. ACM Sigplan notices, 42(6):89-100, 2007.

James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity software. In
NDSS, volume 5, pages 3—4. Citeseer, 2005.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 427-436, 2015.

Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David Evans.
Automatically hardening web applications using precise tainting. In IFIP International
Information Security Conference, pages 295-307. Springer, 2005.

WEeili Nie, Nina Narodytska, and Ankit Patel. Relgan: Relational generative adver-
sarial networks for text generation. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

NVIDIA. Tensorrt documentation. https://docs.nvidia.com/deeplearning/
tensorrt, 2021. Accessed: 2021-05-25.

169

https://github.com/ricmoo/aes-js
https://docs.nvidia.com/deeplearning/tensorrt
https://docs.nvidia.com/deeplearning/tensorrt

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

164]

[165]
[166]

[167]

[168]

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis
with auxiliary classifier gans. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 2642-2651. JMLR. org, 2017.

Okay Demir. Decision tree implementation. https://github.com/okaydemir/
binary-classification, 2016. Accessed: 2024-10-11.

Oleksii Oleksenko, Marco Guarnieri, Boris Kopf, and Mark Silberstein. Hide and seek
with spectres: Efficient discovery of speculative information leaks with random testing.
In 20283 IEEE Symposium on Security and Privacy (SP), pages 1737-1752. IEEE, 2023.

Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. Specfuzz:
Bringing spectre-type vulnerabilities to the surface. arXiv preprint arXiw:1905.10311,
2019.

Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. Specfuzz:
Bringing spectre-type vulnerabilities to the surface. In Proceedings of the 29th USENIX
Conference on Security Symposium, SEC’20, USA, 2020. USENIX Association.

OpenAl. Gpt-4 technical report, 2023.

Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun, Jisung Park,
Hasan Hassan, Minesh Patel, Jeremie S Kim, and Onur Mutlu. A deeper look into
rowhammer’s sensitivities: Experimental analysis of real dram chips and implications
on future attacks and defenses. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 1182-1197, 2021.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures:
the case of aes. In Topics in Cryptology—CT-RSA 2006: The Cryptographers’ Track

at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2005. Proceedings,
pages 1-20. Springer, 2006.

Nicolas Papernot, Patrick McDaniel, lan Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on computer and communications
security, pages b06-519, 2017.

A. Pardoe. Spectre mitigations in msve, Jan. 2018.

Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan Dolan-
Gavitt. Examining Zero-Shot Vulnerability Repair with Large Language Models. In
2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2023.

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard.
DRAMA: Exploiting DRAM addressing for Cross-CPU attacks. In 25th USENIX
Security Symposium (USENIX Security 16), pages 565-581, Austin, TX, August 2016.
USENIX Association.

The OpenSSL Project. Openssl v3.0.0, 2021.

170

https://github.com/okaydemir/binary-classification
https://github.com/okaydemir/binary-classification

[169]

[170]

[171]

172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+ scope: Overcoming
the observer effect for high-precision cache contention attacks. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security, pages
2906-2920, 2021.

Salman Qazi, Yoongu Kim, Boichat Boichat, Eric Shui, and Mattias Nissler. Intro-
ducing half-double: New hammering technique for dram rowhammer bug. https:
//github.com/google/hammer-kit, 2021.

Minghui Qiu, Feng-Lin Li, Siyu Wang, Xing Gao, Yan Chen, Weipeng Zhao, Haiqing
Chen, Jun Huang, and Wei Chu. Alime chat: A sequence to sequence and rerank
based chatbot engine. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 498-503, 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9,
2019.

Benjamin J Radford, Bartley D Richardson, and Shawn E Davis. Sequence ag-
gregation rules for anomaly detection in computer network traffic. arXiv preprint
arXiw:1805.03735, 2018.

Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida. Rage against
the machine clear: A systematic analysis of machine clears and their implications for
transient execution attacks. In 30th USENIX Security Symposium (USENIX Security
21), pages 1451-1468, 2021.

Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip attack: Crushing neural
network with progressive bit search. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1211-1220, 2019.

Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Tht: Targeted neural network attack
with bit trojan. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 13198-13207, 2020.

Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali Chakrabarti, and
Deliang Fan. T-bfa: Targeted bit-flip adversarial weight attack. arXiw preprint
arXw:2007.12336, 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural networks. In Furopean
conference on computer vision, pages 525-542. Springer, 2016.

Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and Herbert
Bos. Flip feng shui: Hammering a needle in the software stack. In USENIX Security
symposium, volume 25, pages 1-18, 2016.

171

https://github.com/google/hammer-kit
https://github.com/google/hammer-kit

[180]

[181]

[182]

[183]

184]

[185]

[186]

[187]

[188)]

[189)]

[190]

[191]

Kimberly Redmond, Lannan Luo, and Qiang Zeng. A cross-architecture instruction
embedding model for natural language processing-inspired binary code analysis. arXiv
preprint arXiw:1812.09652, 2018.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele,
and Honglak Lee. Generative adversarial text to image synthesis. arXiv preprint
arXiv:1605.05396, 2016.

Bruno Rodrigues, Fernando Magno Quintao Pereira, and Diego F Aranha. Sparse rep-
resentation of implicit flows with applications to side-channel detection. In Proceedings
of the 25th International Conference on Compiler Construction, pages 110-120, 2016.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533-536, 1986.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 115(3):211-252, 2015.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-privilege-boundary data
sampling. In C'CS, 2019.

Michael Schwarz, Robert Schilling, Florian Kargl, Moritz Lipp, Claudio Canella,
and Daniel Gruss. Context: Leakage-free transient execution. arXiv preprint
arXiw:1905.09100, 2019.

Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss. Net-
spectre: Read arbitrary memory over network. In Furopean Symposium on Research
in Computer Security, pages 279-299. Springer, 2019.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE international conference
on computer vision, pages 618-626, 2017.

Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, and Florian Kerschbaum.
On the robustness of backdoor-based watermarking in deep neural networks. In Pro-
ceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security,
[Hamp;MMSec 21, page 177-188, New York, NY, USA, 2021. Association for Com-
puting Machinery.

172

[192]

193]

[194]

[195]

[196]

197]

198

199]

200]

201]

202]

Kareemulla Shaik, Janjhyam Venkata Naga Ramesh, Miroslav Mahdal, Mohammad
Zia Ur Rahman, Syed Khasim, and Kanak Kalita. Big data analytics framework using
squirrel search optimized gradient boosted decision tree for heart disease diagnosis.
Applied Sciences, 13(9):5236, 2023.

Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang,
Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena. Bitblaze:
A new approach to computer security via binary analysis. In International Conference
on Information Systems Security, pages 1-25. Springer, 2008.

Douglas Stebila and Michele Mosca. Post-quantum key exchange for the internet and
the open quantum safe project. In Roberto Avanzi and Howard Heys, editors, Selected
Areas in Cryptography — SAC 2016, pages 14-37, Cham, 2017. Springer International
Publishing.

Julian Stecklina and Thomas Prescher. Lazyfp: Leaking fpu register state using mi-
croarchitectural side-channels, 2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In Proceedings of the 27th International Conference on Neural In-
formation Processing Systems - Volume 2, NIPS’14, page 3104-3112, Cambridge, MA,
USA, 2014. MIT Press.

Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. Advances
in neural information processing systems, 12, 1999.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
[an Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiw:1512.6199, 2013.

Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine Man-
zagol, Charles Sutton, and Edward Aftandilian. Learning to fix build errors with
graph2diff neural networks. In Proceedings of the IEEE/ACM 42nd international con-
ference on software engineering workshops, pages 19-20, 2020.

Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Defeating soft-
ware mitigations against rowhammer: a surgical precision hammer. In International

Symposium on Research in Attacks, Intrusions, and Defenses, pages 47—66. Springer,
2018.

Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano Giuffrida,
Herbert Bos, and Kaveh Razavi. Throwhammer: Rowhammer attacks over the network
and defenses. In 2018 USENIX Annual Technical Conference (USENIX ATC 18),
pages 213-226, Boston, MA, July 2018. USENIX Association.

173

203

204]

205]

[206]

1207]

[208]

[209]

[210]

[211]

212]

[213]

214]

[215]

Wilson L. Taylor. “cloze procedure”: A new tool for measuring readability. Journalism
Quarterly, 30(4):415-433, 1953.

Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and Kang G Shin. Go go
gadget hammer: Flipping nested pointers for arbitrary data leakage. In 33rd USENIX
Security Symposium (USENIX Security 24), Philadelphia, PA, August 2024. USENIX

Association.

M. Caner Tol, Kemal Derya, and Berk Sunar. purl: Discovering transient execution
vulnerabilities using reinforcement learning, 2024.

M. Caner Tol, Berk Gulmezoglu, Koray Yurtseven, and Berk Sunar. FastSpec: Scalable
Generation and Detection of Spectre Gadgets Using Neural Embeddings. In 2021 IEEE
FEuropean Symposium on Security and Privacy (EuroS&P), pages 616-632. IEEE, 2021.

M. Caner Tol, Saad Islam, Andrew J. Adiletta, Berk Sunar, and Ziming Zhang. Don’t
knock! rowhammer at the backdoor of dun models. In 2023 53rd Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN), pages 109-122.
IEEE, 2023.

M. Caner Tol and Berk Sunar. Zeroleak: Using llms for scalable and cost effective
side-channel patching. arXiww preprint arXiw:2308.13062, 2023.

Torchvision. https://pypi.org/project/torchvision/, 2021. Accessed: 2021-05-
26.

Hugo Touvron and et al. Llama 2: Open foundation and fine-tuned chat models, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample.
Llama: Open and efficient foundation language models, 2023.

Florian Tramer, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Stealing machine learning models via prediction apis. In 25th {USENIX} Security
Symposium ({ USENIX} Security 16), pages 601-618, 2016.

P. Turner. “retpoline: a software construct for preventing branch-target-injection.”,
2018.

Anton Tutoveanu. Crystals-kyber javascript. https://github.com/antontutoveanu/
crystals-kyber-javascript, 2023. Accessed: 2023-10-17.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-
order execution. In Proceedings of the 27th USENIX Security Symposium, August
2018.

174

https://pypi.org/project/torchvision/
https://github.com/antontutoveanu/crystals-kyber-javascript
https://github.com/antontutoveanu/crystals-kyber-javascript

[216]

[217]

[218]

219]

[220]

[221]

222]

223

[224]

[225]

Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel
Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking
Transient Execution through Microarchitectural Load Value Injection. In 41th IEEE
Symposium on Security and Privacy (SEP’20), 2020.

Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Marina Minkin, Daniel
Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens. Lvi: Hijacking

transient execution through microarchitectural load value injection. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 54-72. IEEE, 2020.

Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss,
Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuf-
frida. Drammer: Deterministic rowhammer attacks on mobile platforms. In Proceed-
ings of the 2016 ACM SIGSAC conference on computer and communications security,
pages 1675-1689, 2016.

Stephan Van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Ridl: Rogue in-
flight data load. In 2019 IEEE Symposium on Security and Privacy (SP), pages 88-105.
IEEE, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, undefinedukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 6000-6010, Red Hook, NY, USA, 2017. Curran Associates
Inc.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene
dynamics. In Advances in neural information processing systems, pages 613-621, 2016.

Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and
Abhik Roychoudhury. Kleespectre: Detecting information leakage through speculative
cache attacks via symbolic execution. arXiv preprint arXiv:1909.00647, 2019.

Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and
Abhik Roychoudhury. Kleespectre: Detecting information leakage through speculative
cache attacks via symbolic execution. ACM Trans. Softw. Eng. Methodol., 29(3), jun
2020.

Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and Abhik
Roychoudhury. 007: Low-overhead defense against spectre attacks via binary analysis.
arXw preprint arXw:1807.05843, 2018.

Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and Abhik
Roychoudhury. oo7: Low-overhead defense against spectre attacks via program anal-
ysis. IEEE Transactions on Software Engineering, 2019.

175

[226]

[227]

[228]

[229]

230]

[231]

232]

[233]

[234]

[235]

[236]

[237]

Ke Wang and Xiaojun Wan. Sentigan: Generating sentimental texts via mixture
adversarial networks. In IJCAI pages 4446-4452, 2018.

Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. {CacheD}:
Identifying {Cache-Based} timing channels in production software. In 26th USENIX
security symposium (USENIX security 17), pages 235252, 2017.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. High-resolution image synthesis and semantic manipulation with condi-
tional gans. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 8798-8807, 2018.

Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian
Rossow. Osiris: Automated discovery of microarchitectural side channels. In 30th
USENIX Security Symposium (USENIX Security 21), pages 1415-1432, 2021.

Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller, Stefan Mangard, and
Georg Sigl. {DATA }-differential address trace analysis: Finding address-based {Side-
Channels} in binaries. In 27th USENIX Security Symposium (USENIX Security 18),
2018.

Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. Microwalk:
A framework for finding side channels in binaries. In Proceedings of the 34th Annual

Computer Security Applications Conference. Association for Computing Machinery,
2018.

Jan Wichelmann, Florian Sieck, Anna Pétschke, and Thomas Eisenbarth. Microwalk-
ci: practical side-channel analysis for javascript applications. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, 2022.

Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang. Gp-gan: Towards real-
istic high-resolution image blending. In Proceedings of the 27th ACM International
Conference on Multimedia, pages 24872495, 2019.

Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Eliminating timing
side-channel leaks using program repair. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 15-26, 2018.

Tom Wu. jsbn library. http://www-cs-students.stanford.edu/~tjw/jsbn/. Ac-
cessed: 2023-08-03.

Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Alejandra Molina, Michael
Terry, and Carrie J Cai. Promptchainer: Chaining large language model prompts
through visual programming. In CHI Conference on Human Factors in Computing
Systems Extended Abstracts, 2022.

Tongshuang Wu, Michael Terry, and Carrie Jun Cai. Ai chains: Transparent and
controllable human-ai interaction by chaining large language model prompts. In Pro-
ceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 2022.

176

http://www-cs-students.stanford.edu/~tjw/jsbn/

238

[239)

[240]

[241]

[249)

[243]

[244]

[245]

[246]

1247]

248

249

Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr
Babkin, and Sameena Shah. How effective are neural networks for fixing security
vulnerabilities. arXww preprint arXiv:2305.18607, 2023.

Yuan Xiao, Xiaokuan Zhang, Yingian Zhang, and Radu Teodorescu. One bit flips, one
cloud flops: Cross-VM row hammer attacks and privilege escalation. In 25th USENIX
Security Symposium (USENIX Security 16), pages 19-35, Austin, TX, August 2016.
USENIX Association.

Fan Yao, Adnan Siraj Rakin, and Deliang Fan. Deephammer: Depleting the intelli-
gence of deep neural networks through targeted chain of bit flips. In 29th { USENIX}
Security Symposium ({USENIX} Security 20), pages 1463-1480, 2020.

Yuval Yarom and Katrina Falkner. Flush+ reload: a high resolution, low noise, 13 cache
side-channel attack. In 23rd { USENIX} Security Symposium ({ USENIX} Security 14),
pages 719-732, 2014.

Michihiro Yasunaga and Percy Liang. Break-it-fix-it: Unsupervised learning for pro-
gram repair. In International Conference on Machine Learning, pages 11941-11952.
PMLR, 2021.

Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
Panorama: capturing system-wide information flow for malware detection and anal-
ysis. In Proceedings of the 14th ACM conference on Computer and communications
security, pages 116-127, 2007.

Honggang Yu, Kaichen Yang, Teng Zhang, Yun-Yun Tsai, Tsung-Yi Ho, and Yier Jin.
Cloudleak: Large-scale deep learning models stealing through adversarial examples. In
NDSS, 2020.

Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and Christo-
pher W Fletcher. Speculative taint tracking (stt) a comprehensive protection for spec-
ulatively accessed data. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 954-968, 2019.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative ad-
versarial nets with policy gradient. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, AAAT'17, page 2852-2858. AAAI Press, 2017.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In Furopean conference on computer vision, pages 818-833. Springer, 2014.

Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, and Yu-
val Yarom. Ultimate slh: Taking speculative load hardening to the next level. Cryp-
tology ePrint Archive, 2022.

Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang.
Neural machine translation inspired binary code similarity comparison beyond function
pairs. arXiv preprint arXiw:1808.04706, 2018.

177

Appendix A

Spectre (Gadget (Generation

A.1 Assembly Gadget Examples

In this section, corresponding assembly gadget of given examples in Section 4.3 are provided.

> .LFB23:
3 movl global_condition(%rip), %eax
) testl %eax, %eax

movl $0, %eax

6 Y%rax, %rdi
7 movslqg arrayl_size(%rip), %rax

8 cmpq Y%rdi, %rax

9 jbe L1

10 leaq arrayl(%rip), %rax
11 leaq array2(%rip), %rdx

12 movzbl (%rax, %rdi), %eax
13 sall $12, %eax

14 cltq

15 movzbl (%rdx, %rax), %eax
16 andb %al, temp(%rip)
7 WLl

18 rep ret

Listing A.1: When the C code in Listing 4.3 compiled with certain optimizations (gcc 7-4
with O2 enabled), the generated assembly code contains CMOV instruction which fools
007.

178

2 %rdi, %rl3

cmpl Y%esp, %esp
4 movl arrayl_size(%rip), %eax
5 shr $1, Por1l
6 cmpq %rdi, %rax
. ibe LBBI1.1
8 addq %r13, %rll
9 leaq arrayl(%rip), %rax
10 movzbl (%rdi, %rax), %edi
1 jmp leakByteNoinlineFunction
12 .LBB1_1:
13 retq
11 leakByteNoinlineFunction :
15 movl %edi, %eax
16 shlq $9, %rax
17 leaq array2(%rip), %rex
18 movb (%rax , %rex) , %al
19 andb %al, temp(%rip)
20 retq

Listing A.2: While generating gadgets with mutational fuzzing technique, this code is
generated by our algorithm from Kocher’s example 3 (using clang-6.0 with 02

optimization).
| :
2 %Sﬂ
3 cmpl $0, (%rsi)
: je .LBB0_2
5 addl %r15d, %ri2d
6 sarq $1, or1l
7 addb %sil, %rlbb
8 movzbl arrayl(%rdi), %eax
9 ja 11324337
10 testw %r10w, %ax
11 shlq $12, %rax
12 nop
13 movb array2(%rax), %al
14 .1,1324337:
15 andb %al, temp(%rip)
16 .LBB0_2:
17 retq

Listing A.3: While generating gadgets with mutational fuzzing technique, this code is
generated by our algorithm from Kocher’s example 9 (using clang-6.0 with 02
optimization). The instruction sets the lowest 8-bit of %rsi register based on a
condition which is not detected by o007.

179

A.2 Mutational Fuzzing

Table A.1: Instructions and registers inserted randomly in the fuzzing technique.

Instructions
add cmovll jns movzbl ror subl
addb cmp js movzwl sall subq
addl cmpb lea mul salq test
addpd cmpl leal nop sarq testb
addq cmpq leaq not sar testl
andb imul lock notq sal testq
andl incq mov or sbbl testw
andq ja movapd orl sbbq xchg
call jae movaps orq seta XOr
callq jbe movb pop setae xorb
cmova, je movd popq sete xorl
cmovaeq jg movdga prefetchtO shll xorq
cmovbe jle movl prefetchtl shlq lfence
cmovbq jmp movq push shr sfence
cmovl jmpq movslq pushq sub mfence
cmovle jne movss rol subb

Registers

rax eax ax al xmm0 ymm0
rbx ebx bx bl xmm1 ymml1
rex ecx cx cl xmm?2 ymm?2
rdx edx dx dl xmma3 ymma3
rsp esp Sp spl xmm4 ymm4
rbp ebp bp bpl xmmb ymmb
rsi esi si sil xmm©6 ymm©6
rdi edi di dil xmm'7 ymm7
r8 r8d 8w r8b xmm8 ymm8
r9 r9d r9w r9b xmm9 ymm9
r10 r10d r10w r10b xmm10 ymm10
rll rlld rllw rllb xmm1ll ymmll
rl2 rl2d r12w r12b xmm12 ymm12
rl3 r13d rl13w r13b xmm13 ymm13
rl4 rl4d rldw rl4b xmml14 ymml14
rld r15d rlow r15b xmm15 ymmld

180

N

N

N

Appendix B

Side-Channel Patching

B.1 Example Patching Loop with GPT-4

System prompt:

You are an expert at implementing constant-time cryptographic algorithms in C. Patch the
given functions according to user’s instructions. Do not give detailed explanations. The
generated code should be complete, do not omit any part of the code. It should be able to
run without any post-processing. You can implement new functions and integrate them with
the original function. Do not introduce new arguments to the given function. Do not
change the name of the function.

User prompt:
int memory_leakage_case_1(int x, int y, int option) {
volatile int z[3] = { 0, 2, 300 };
z[2] = y;
if (option > 3) {
return z[1];
} else {
return z[x % 3];
}
}

z array is accessed dependent on the secret in line return z[x % 3];. Patch the code
such that the array access is made input independent.

Response:
Sure, I will patch the code using a technique called "array blinding", which uniformly
accesses every element in the array to ensure that access times are input-independent.

Here is the patched function:

(l(C
int memory_leakage_case_1(int x, int y, int option) {
volatile int z[3] = { 0, 2, 300 };
z[2] = y;
volatile int result = O;
int i = O;
for(i=0;i<3;i++){

181

[}

int equal = (i == (x%3));
result = (equal * z[i]) + ((1 - equal) * result); // if i == (x % 3), result will
be z[i], otherwise, it remains the same
+
if (option > 3) {
return z[1];
} else {
return result;

;| In the updated code, regardless of the input, the function now accesses all elements in

the array ‘z¢. We add a mask ‘equal‘ which is 1 if the current index ‘i‘ is the required

index and O otherwise. So, the ‘result‘ will take the value of ‘z[i]‘ only when ‘if
equals ‘(x % 3)¢. This ensures all elements are accessed, preventing timing attacks based
on conditional access to array elements.

User prompt:
The condition in if (option > 3) is secret dependent and causes side channel
vulnerability. Patch the code such that it does not require any conditional execution.

7|}

Response:
Absolutely, I understand. We can eliminate the conditional by using a masking technique
similar to what we applied for the array access. Here is the patched function:

t((C
int memory_leakage_case_1(int x, int y, int option) {
volatile int z[3] = { 0, 2, 300 I};
z[2] = y;
volatile int result = 0;
int i = 0;
for(i=0;i<3;i++) {
int equal = (i == (x%3));
result = (equal * z[i]) + ((1 - equal) * result);
}

int mask = (option > 3);
return (mask * z[1]) + ((1 - mask) * result);

(SN N1

With this new method, the function performs the calculation ‘z[1]‘ and ‘result‘ in every
case. The final returned value depends on the mask value. If ‘option > 3¢, mask will be
‘1 and ‘z[1]°¢ is returned. Otherwise, ‘result‘ is returned. The code is now constant
time and no branches are secret dependent.

182

B.2 Microbenchmark of Leaky Functions Compiled from

the Literature

// taken from Pitchfork, Cauligi, et al.
memory_leakage_case_1(X, ¥y,
z[3] = {0, 2, 300 };

option) {

z[2] = y;
(option > 3) {
z[1];
} {
z[x % 3];
}

}
// table lookup - from DATA - Weiser et al.
LUT[16]={0x52, 0x19, Ox3E, Ox7F,
0x0C, OxbA, 0x6D, 0x2B,
0x3F, Ox1A, Ox7E, 0x53,
0x6C, 0x5B, 0xOD, 0x37};
memory_leakage_case_2_transform(kval) {
memory_leakage_case_2(key) {
val = memory_leakage_case_2_transform(0);
val+=memory_leakage_case_2_transform(key) ;
val;

}

// from CacheD paper- Wang et al
memory_leakage_case_3(secret){
table[128] = {03};
(i=0; i<128;
table[i] = 1i;

i++){

i, t;
index
(i=0; 1<200; i++){

index = (index+secret) % 128;
t = table[index];

t = table[(index) % 791;

=O;

t;

uint8_t book[10]
49, 57, B3 };
uint8_t* memory_leakage_case_4(uint8_t* msg,
(i =0; i < len; ++i)
msg[i] = book[msg[i]-48];

attribute__((aligned(64))) =

msg;

LUT[kval % 161; %

{ 52, 48, 55, 51, 56, 54, 50,

len) {

183

// getelement-taken from CacheAudit, Doychev et al
unsigned int A[16] = {0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15};
int memory_leakage_case_b5(int secret) {
if (secret < 16)
return Alsecret];

3

// isDiffVull - taken from FlowTracker https://dl.acm.org/doi/pdf
/10.1145/2892208.2892230

int branch_leakage_case_1(char *pw, char *in) {

int i;

for (i=0; i<16; i++) {
if (pwlil!=in[i]) {

return O;

}

}

return 1;

3

// InsertionSort-taken from CacheAudit, Doychev, et al.
uint8_t * branch_leakage_case_2(uint8_t *a, int array_size){
int i, j, index;
for (i = 1; i < array_size; ++i){
index = alil;
for (j = i; j > 0 & alj-1] > index; j--)
aljl = alj-11;
alj]l = index;
}
return a;

}

// eq - Time variant - taken from FlowTracker https://dl.acm.org/doi/pdf
/10.1145/2892208.2892230
int branch_leakage_case_3(char *p, char *q) {
if (plo] '= ql[0])
return false;
else if (p[1] != q[1D)
return false;
else
return p[2] == q[2];
}
// example 1-from Blazer, Antonopoulos, et al.
int branch_leakage_case_4(int high, uint low) {

int i;
if (high == 0) {
i=0;
while(i < low) i++;
}
else {
i = low;
while(i > 0) i--;
}

return i;

184

[V

// example 2-from Blazer, Antonopoulos, et al.
int branch_leakage_case_5(int high, int low) {

int i;

if (low > 0) { // 0(2*low)
i=0;
while(i<low) i++;
while(i>0) i--;

} else { // 0Q1)
if (high == 0) { i =5; }
else { i =0; i++; }

}

return i;

}

15| // taken from https://github.com/PLSysSec/haybale-pitchfork

int branch_leakage_case_6(int x) {
if (x> 10) {
return x % 200 * 3;
} else {
return x + 10;
¥
}
// taken from https://github.com/PLSysSec/haybale-pitchfork

4| int branch_leakage_case_7(int x, int y, int option) {

volatile int z[3] = { 0, 2, 300 };
z[2] = y;
if (option > 3) {
return z[1];
} else {
return z[2];
}
}
// from ctgrind tool github repo
char branch_leakage_case_8(unsigned char *a, unsigned char *b) {
unsigned i;
for (1 =0; 1 < 16; i++) {
if (ali] !'= b[il])
return 0;
}

return 1;

3

185

N

// mu - taken from SC-Eliminator https://dl.acm.org/doi/pdf/10.1145/3213846.3213851
// the C code of a textbook implementation of a 3-way cipher.
int32_t * branch_leakage_case_9(int32_t *a) {
i;
int32_t b[3];
b[0] = b[1] = b[2] = 0;
(i=0; 1i<32; i++) {
b[0] <<= 1;
b[1] <<= 1;
b[2] <<= 1;
(al0]&1)
b[2] I=1;
(al1l&1)
b[1] |= 1;
(al2]&1)
b[0] |= 1;
al0] >>= 1;
al1] >>= 1;
al2] >>= 1;

al0] = b[0];
al1] = b[1];
al2] = b[2];

)| ¥

// taken from https://github.com/PLSysSec/haybale-pitchfork

20/ uint8_t branch_leakage_case_10(uint8_t* public_arr, uint8_t public_arr_len, uint8_t*

secret_arr, uint8_t i) {

uint8_t x = public_arr[i];
(j = 0; j < public_arr_len; j++) {
secret_arr[j] += x;

}
(x > 10) {
public_arr[0] + secret_arr[0];
} {
public_arr([1] + secret_arr[1];
}

186

-

16

17

// bubblesort- taken from CacheAudit https://www.usenix.org/system/files/conference/
usenixsecurityl13/secl3-paper_doychev.pdf
uint8_t * branch_leakage_case_11(uint8_t *a, int n){
int i, j, temp;
for (1 =0; 1 <n - 1; ++i)
for (j =0; j<n-1-1; ++j)
if (alj] > alj+11){

temp = al[j+1];
alj+1] = aljl;
alj]l = temp;
}
return a;

}

// SelectionSort - taken from CacheAudit https://www.usenix.org/system/files/
conference/usenixsecurityl13/sec13-paper_doychev.pdf

5|uint8_t * branch_leakage_case_12(uint8_t *a, int array_size){

int i;
for (i = 0; i < array_size - 1; ++i){
int j, min, temp;
min = i;
for (j = i+l; j < array_size; ++j){
if (alj] < almin])
min = j;
}
temp = alil;
ali] = almin];
a[min] = temp;
}

return a;

187

Appendix C

RL-based pArch Vulnerability
Exploration

C.1 Instruction Sets

188

Table C.1: Number of instructions per set used in the action space

Instruction Set Count | Instruction Set | Count
ADOX_ADCX 8 | AES 12
AVX 695 | AVX2 286
AVX2GATHER 16 | AVX512F 512 2192
AVX512F _128 1816 | AVX512F _256 1940
AVX512F_SCALAR 584 | AVX512DQ_128 247
AVX512DQ_256 281 | AVX512DQ_512 357
AVX512BW_128 467 | AVX512BW_256 467
AVX512BW_512 467 | AVX512F_128N 23
AVX512DQ_SCALAR 44 | AVX512CD_512 38
AVX512CD_128 38 | AVX512CD_256 38
AVX512BW_128N 8 | AVX512DQ_128N 8
AVX512DQ_KOP 18 | AVX512BW_KOP 34
AVX512F_KOP 15 | AVXAES 12
186 809 | 1386 196
[486REAL 37 | CMOV 96
PENTIUMREAL 5 | 1186 124
LONGMODE 24 | LAHF 2
1286 PROTECTED 26 | I1286REAL 10
FAT_NOP 3 | RDPMC 1
PPRO 2 | BMI1 26
BMI2 32 | CET 2
F16C 8 | FMA 192
INVPCID 1 | CMPXCHG16B 2
LZCNT 6 | PENTIUMMMX 129
SSE 97 | MOVBE 6
PCLMULQDQ 2 | RDRAND 3
RDSEED 3 | RDTSCP 1
RDWRFSGS 8 | FXSAVE 2
FXSAVEG64 2 | SSEMXCSR 2
SSE2 264 | SSE2MMX 6
SSE3 20 | SSE3X87 2
SSE4 96 | SSE42 25
POPCNT 6 | SSSE3AMMX 32
SSSE3 32 | X87 119
FCMOV 8 | FCOMI 4
XSAVE 6 | XSAVEC 2
XSAVEOPT 2 | XSAVES 4

189

	Introduction
	Contributions
	Publications

	Background
	Microarchitectural Vulnerabilities
	Rowhammer Attacks
	Arch Side Channel Attacks
	Constant-Time Implementations

	Transient Execution Attacks
	Analysis Techniques for Arch Vulnerabilities
	Detecting Side-channels
	Detecting Spectre Gadgets

	Machine Learning
	Deep Neural Networks
	Natural Language Processing
	seq2seq Architecture
	Generative Adversarial Networks
	Attention-only Models

	Reinforcement Learning

	Search of Hardware Specific Fault Targets on Security-Sensitive Software
	Motivation
	Backdoor Attacks on DNN Models
	Threat Model
	Backdoor Injection using Rowhammer
	Offline Attack Phase
	Memory Profiling For Adjacent Rows
	Memory Profiling For Faults
	Constrained Fine-Tuning with Bit Reduction (CFT+BR)

	Online Attack Phase: Flipping Bits in the Deployed Model
	Releasing the Flippy Rows
	Mapping the Model Weights to Flippy Rows
	Flipping Bits in the Weight File

	Weight Quantization

	Evaluation
	Experimental Setup
	Evaluation Metrics
	Rowhammer Attack on Deployed Model - Online
	CIFAR-10 Experiments
	ImageNet Experiments
	Generalization to Other DNN Architectures

	Potential Countermeasures
	Prevention-Based Countermeasures
	Detection-Based Countermeasures
	Recovery-based Countermeasures

	Related Works
	Discussion
	Dynamic Analysis Approach on the Detection of Fault Targets
	Tool Implementation
	Experiments
	ML Misclassification
	Crypto Libraries

	Conclusion
	Scalable Generation and Detection of Spectre Gadgets
	Motivation
	Related Works
	Spectre attacks and detectors
	Binary Analysis with Embedding
	GAN-based Text Generation

	SpectreGAN: Spectre Gadget Generation
	Gadget Generation via Fuzzing
	SpectreGAN: Assembly Code Generation with GANs
	SpectreGAN Architecture
	Training
	Tokenization and Training Parameters
	Evaluation

	Diversity and Quality Analysis of Generated Gadgets
	Syntactic Analysis
	Microarchitectural Analysis
	Detection Analysis

	FastSpec: Fast Gadget Detection Using BERT
	Training Procedures
	Pre-training
	Fine-tuning

	Training Details and Evaluation
	Case Study: OpenSSL Analysis
	Case Study: Phoronix Test Suite Analysis

	Discussion and Limitations
	Gadget Verification
	Scalability and Flexibility
	Comparison of FastSpec with Other Tools
	Scope and Limitations

	Conclusion

	Automated Side-Channel Patching in Source Code Using LLMs
	Motivation
	Related Works
	Threat Model and Scope
	Research Questions

	Methodology
	Ensuring Constant-Time Execution
	Evaluating Side-Channel Leakage
	Patching for Constant-timeness

	Mitigating Spectre-v1
	Finding Spectre-v1 Gadgets
	Patching Spectre-v1 Gadgets

	Evaluation
	Patching Spectre-v1 Gadgets
	Patching a Real World Spectre-v1 Gadget
	Patching Javascript Libraries for Constant-Timeness
	Comparison of LLMs

	Discussion and Limitations
	Conclusion

	Exploring Arch Vulnerabilities Using Reinforcement Learning
	Motivation
	Related Works
	Threat Model and Scope
	Our RL Framework
	Environment
	RL Agent
	Action Space
	State
	Observation
	Reward Function

	Experiments
	Discovered Transient Execution Mechanisms
	Masked Exceptions
	Transitions Between MMX and x87

	Discussion
	Conclusion

	Conclusion
	Spectre Gadget Generation
	Assembly Gadget Examples
	Mutational Fuzzing
	Side-Channel Patching
	Example Patching Loop with GPT-4
	Microbenchmark of Leaky Functions Compiled from the Literature
	RL-based Arch Vulnerability Exploration
	Instruction Sets

