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Abstract

Microarchitectural vulnerabilities pose a significant security challenge, enabling attackers

to exploit hardware optimizations to compromise system integrity and data confidentiality.

These vulnerabilities, often hidden in the complex interactions between modern processors,

memory hierarchies and software stack. It is required to have innovative techniques for their

discovery, and mitigation. Existing approaches struggle to address the scale and complexity

of these threats, necessitating new methodologies that combine the strengths of artificial

intelligence and optimization.

This dissertation presents a comprehensive exploration of microarchitectural vulnerabili-

ties, leveraging novel AI-driven techniques to tackle some of the most pressing challenges in

the field. On the fault attack side, we demonstrate a Rowhammer-based backdoor injection

attack on machine learning models deployed on real hardware. This work introduces a con-

strained optimization framework to efficiently identify and exploit sparse and device-specific

memory vulnerabilities, achieving high attack success rates with minimal fault injections.

Next, we propose a hybrid approach for the detection of Spectre gadgets using Generative

Adversarial Networks for generating diverse gadget datasets and a BERT-based classifier

for high-dimensional analysis. This methodology significantly improves the scalability and

comprehensiveness of gadget detection in large software systems.

Then, we explore the use of Large Language Models for patching source code vulnerabil-

ities caused by microarchitectural side-channel leakages. By designing carefully structured

prompts and leveraging dynamic analysis tools, we show that LLMs can generate efficient
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and leakage-resilient patches, offering a scalable and cost-effective alternative to manual code

mitigation.

Finally, we develop a Reinforcement Learning framework for the discovery of microarchi-

tectural vulnerabilities. By simulating x86 instruction execution in a custom RL environ-

ment, we enable automated exploration of instruction sequences, uncovering novel transient

execution mechanisms and previously unknown vulnerabilities.
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Chapter 1

Introduction

In recent years, the increasing complexity and performance demands of modern computing

systems have driven the development of microarchitectural optimizations. These optimiza-

tions—essential to improving computation speed and efficiency—come with unintended se-

curity risks. By exploiting subtle interactions within hardware components, memory access

patterns, and speculative execution processes, attackers have discovered a range of novel vul-

nerabilities. Among these, Rowhammer and transient execution attacks have demonstrated

the potential to compromise data integrity, confidentiality, and even control-flow integrity

in a range of computing environments. This thesis explores how artificial intelligence (AI)

can assist in identifying, analyzing, and mitigating these microarchitectural vulnerabilities,

providing automated, scalable tools for security in modern systems. Our work further exam-

ines how these hardware-level vulnerabilities impact machine learning (ML) models, which

are increasingly embedded in security-sensitive applications, presenting new challenges in

robustness and resilience.

One of the prominent examples of fault attacks, Rowhammer, leverages repetitive ac-

cess to specific DRAM rows to induce charge leakage in adjacent rows, resulting in bit

flips [101]. Since its discovery, Rowhammer has been shown to exploit hardware weaknesses

across diverse computing domains, from local devices to cloud and edge environments. Ef-

1



forts to mitigate Rowhammer have yielded a range of defenses, from software-based detec-

tion methods [39, 90] to hardware-level countermeasures. However, these solutions often

fail to address Rowhammer’s growing sophistication fully. The discovery of Rowhammer

gadgets [204], which leverage predictable memory accesses to execute unintended behavior,

highlights Rowhammer’s potential to compromise even more secure systems. Similarly, re-

cent work by Adiletta et al. [9] demonstrated that Rowhammer can target internal CPU

states, creating new risks to stack variables and sensitive data.

The growing adoption of machine learning models in security-critical applications intro-

duces additional complexity to the microarchitectural vulnerability landscape. Deep neural

networks (DNNs), widely used for tasks like image classification, anomaly detection, and

natural language processing, are vulnerable to adversarial and fault injection attacks that

can compromise both model accuracy and integrity [66,199]. Fault injection attacks, such as

Rowhammer, can target ML models by flipping bits in their weights, resulting in significant

accuracy degradation or even targeted misclassifications [81,240].

Transient execution attacks, including Spectre and Meltdown, represent another signif-

icant class of microarchitectural vulnerabilities. These attacks exploit speculative and out-

of-order execution, core mechanisms in modern CPUs designed to maximize performance.

Spectre, one of the earliest and most widely publicized of these attacks, manipulates spec-

ulative execution paths to expose sensitive data [105]. By tricking the CPU into perform-

ing speculative operations on malicious data, attackers can infer confidential information

through side-channel analysis. Meltdown, a closely related attack, leverages out-of-order

execution to access unauthorized memory locations, creating further security risks in multi-

user and multi-tenant environments [119]. As these vulnerabilities became widely known,

they prompted extensive research into speculative execution defenses, but the effectiveness

of current mitigations remains limited.

Addressing the Spectre and Meltdown vulnerabilities has proven challenging. Hard-

ware patches are often infeasible due to the prohibitive costs associated with redesigning
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CPUs, while software mitigations frequently degrade performance, limiting their appeal.

Additionally, current automated detection tools, including taint analysis and symbolic ex-

ecution [72, 224], struggle to scale effectively for large binaries and complex dependencies.

Our work introduces an AI-driven tool that addresses these limitations by leveraging gen-

erative models, including GANs and Transformers, to automatically detect and mitigate

speculative execution vulnerabilities at scale. This approach provides a more robust, flexible

means of identifying and patching Spectre vulnerabilities, allowing developers to address

microarchitectural risks without compromising performance.

This thesis investigates the application of AI techniques to improve the resilience of

modern systems against microarchitectural vulnerabilities.

1.0.1 Contributions

In summary, this thesis makes the following contributions:

• We develop a novel constrained optimization algorithm that identifies memory bit loca-

tions vulnerable to Rowhammer and maps model weights to create backdoors effectively.

Our optimization jointly minimizes the number of model modifications required for back-

dooring by simultaneously optimizing trigger patterns, vulnerable bit locations, and model

parameter values. We validate the practicality of our approach by targeting a deployed

ResNet-20 model trained on CIFAR-10 in PyTorch. With Rowhammer performed on live

DRAM, the model retains over 91% test accuracy and achieves a 94% backdoor attack

success rate by flipping only 10 out of 2.2 million bits. Through experiments, we show that

state-of-the-art countermeasures against bit-flip attacks are either ineffective (e.g., weight

reconstruction, piecewise weight clustering), introduce significant overhead (e.g., weight

encoding), or degrade accuracy considerably (e.g., binarization-aware training) against our

attack.

• We develop MFS, the first simulation tool designed to identify LeapFrog gadgets. Built

on Intel Pin, it systematically analyzes binaries and incorporates time-domain analysis,
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improving upon existing methodologies. Using MFS, we scan the Open Quantum Safe

library, OpenSSL encryption, and a machine learning model to quantify potential LeapFrog

gadgets in their codebases.

• We present the first comprehensive study of LLMs to automatically patch microarchitec-

tural side-channel vulnerabilities. To the best of our knowledge, this is the first work to

propose an automated method to fix side channels in the source code, which eases the

shortage of developers with security expertise in the CI/CD pipeline.

• We propose prompting techniques and a toolchain leveraging LLMs to detect vulner-

abilities, generate security patches, and evaluate performance and cost, demonstrating

effectiveness across programming languages and real-world libraries.

• We propose a novel approach for discovering microarchitectural vulnerabilities using rein-

forcement learning (RL).

• We design a custom RL environment simulating the execution of x86 instructions on a

microarchitecture, enabling the RL agent to explore the instruction space effectively.

• We show that the RL agents are able to discover unknown transient execution mecha-

nisms, such as masked floating-point exceptions and MME/x87 transitions, showcasing its

capability in identifying novel vulnerabilities.

1.0.2 Publications

The work presented in this dissertation was a collaborative effort with several co-authors.

The overview of the chapters and their corresponding publications are shown in Figure 1.1.

The following publications are associated with this dissertation:

1. M. Caner Tol, Saad Islam, Andrew J. Adiletta, Berk Sunar, and Ziming Zhang.

”Don’t Knock! Rowhammer at the Backdoor of DNN Models.” In 2023 53rd Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

IEEE, 2023.
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2. M. Caner Tol, Berk Gulmezoglu, Koray Yurtseven, and Berk Sunar. ”Fastspec:

Scalable generation and detection of spectre gadgets using neural embeddings.” In

2021 IEEE European Symposium on Security and Privacy (EuroS&P) IEEE, 2021.

3. M. Caner Tol, and Berk Sunar. ”ZeroLeak: Automated Side-Channel Patching

in Source Code Using LLMs.” In European Symposium on Research in Computer

Security, pp. 290-310. Cham: Springer Nature Switzerland, 2024.

4. M. Caner Tol, Kemal Derya, and Berk Sunar. ”µRL: Discovering Transient Execu-

tion Vulnerabilities Using Reinforcement Learning” Preprint (2024).

5. Andrew J. Adiletta, M. Caner Tol, and Berk Sunar. ”LeapFrog: The Rowhammer

Instruction Skip Attack.” hardwear.io (2024).

The following publications are excluded from this dissertation:

1. Koksal Mus, Yarkın Doröz, M. Caner Tol, Kristi Rahman and Berk Sunar, ”Jolt:

Recovering TLS Signing Keys via Rowhammer Faults,” 2023 IEEE Symposium on

Security and Privacy (SP), San Francisco, CA, USA, 2023

2. Kemal Derya,M. Caner Tol, and Berk Sunar. ”FAULT+PROBE: A Generic Rowhammer-

based Bit Recovery Attack.” Preprint (2024).

3. Berk Gulmezoglu, Andreas Zankl, M. Caner Tol, Saad Islam, Thomas Eisenbarth,

and Berk Sunar. 2019. Undermining User Privacy on Mobile Devices Using AI. In

Proceedings of the 2019 ACM Asia Conference on Computer and Communications

Security (Asia CCS ’19). Association for Computing Machinery, New York, NY, USA

4. Andrew Adiletta, M. Caner Tol, Yarkın Doröz, and Berk Sunar. 2024. Mayhem:

Targeted Corruption of Register and Stack Variables. In Proceedings of the 19th

ACM Asia Conference on Computer and Communications Security (ASIA CCS ’24).

Association for Computing Machinery, New York, NY, USA, 467–482
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§2.1.2. Side Channels

LLC Fingerprinting [73]

§2.1.3. Transient Execution

§2.1.1. Fault Injection

Mayhem [9]
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§2.1.2.1. Patching §5. ZeroLeak [208]

Figure 1.1: Overview of the dissertation. The subcategories of microarchitectural
vulnerabilities and the aspects we address are listed in a tree structure. For each type of

vulnerability, the corresponding publications are shown as leaf nodes. Excluded
publications are indicated with dashed boxes.

6



Chapter 2

Background

2.1 Microarchitectural Vulnerabilities

2.1.1 Rowhammer Attacks

As memories become more compact and memory cells get closer and closer, the boundaries

between the DRAM rows do not provide sufficient isolation from electrical interference. The

data is encoded in the form of voltage levels inside the capacitors, which leak charge over

time. Thus, the memory cells have to be refreshed periodically by activating the rows to

retain the data reliably, generally after every 64 ms. Since refreshing every row in DRAM is

time and energy-consuming, a long refresh period is preferable as long as the memory cells

can retain data until the next refresh.

Kim et al. [101] identified that when the voltage of a row of memory cells is switched back

and forth, nearby memory cells cannot retain the stored data until the next refresh, causing

bit flips. Suppose an attacker is residing in a nearby DRAM row, although, in a completely

isolated process, the attacker can cause a faster leakage in the victim row by just accessing his

own memory space repeatedly (hammering). Since the Rowhammer vulnerability has been

discovered, it was rigorously analyzed [100, 162] and many exploits, such as unauthorized

access to a co-hosted VM [179], Android root exploit [218], and recovery of secret crypto
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keys [55,92,148,149], was shown. Recently, [49,59,94] have shown that more than 80% of the

DRAM chips in the market are vulnerable to the Rowhammer attack including DDR4 chips

having Target Row Refresh (TRR) mitigation. [78] proposed a methodology that results in bit

flips in 99.9% of all DRAM rows on DDR4 chips with TRR protection. The Error Correcting

Codes (ECC) mitigation has also been bypassed in [43]. Rowhammer is a significant threat

to shared cloud environments [42, 239] as it can be launched across virtual machine (VM)

boundaries and even remotely through JavaScript. Two research teams concurrently [120,

202] showed even a remote machine can induce Rowhammer bit flips by sending network

packets. More recently, [170] have shown a combined effect of more than two aggressor rows

to induce bit flips in recent generations of DRAM chips. All existing Rowhammer defenses

including TRR, ECC, detection using Hardware Performance Counters, and changing the

refresh rate can not fully prevent the Rowhammer attack [59, 68]. The only requirement

of the Rowhammer attack is that the attacker and the victim share the same DRAM chip,

vulnerable to the Rowhammer attack.

Terminal Brain Damage [81] attack showed that DNN model weights are vulnerable to

Rowhammer since bit-flip corruptions can alter the value of floating-point numbers signifi-

cantly, causing accuracy degradation and even targeted misclassification. Deephammer [240]

showed that Rowhammer can deplete the accuracy of quantized DNN models as well.

2.1.2 µArch Side Channel Attacks

The state of the shared µArch resources, such as cache, DRAM, internal buffers and TLB,

can be observed by a colocated attacker to infer the secret data of the victim. In this work, we

focus on cache side-channels. Over the past years, different techniques have been developed

to extract sensible data by using cache timing as a side-channel attack.

FLUSH+RELOAD [241] leverages the last-level cache (LLC) to monitor memory access

patterns in shared pages. While it does not require the attacker and victim to share the

same execution core, it flushes a potential victim address from the cache, and then measures
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the reload time if the target address is accessed. EVICT+RELOAD [70] is another work

where an eviction technique is used when cache flushing is not available.

Flush+Flush [69] attack introduces a novel method for exploiting cache timing vulnera-

bilities that relies solely on the execution time of the clflush instruction in x86 CPUs rather

than the memory accesses, setting it apart from traditional cache attacks. Evict+Time [163]

attack exploits the timing difference between cache hits and misses to infer cache state. By

measuring execution time, an attacker can deduce if a cache miss occurred, revealing infor-

mation about data access patterns. Evict+Spec+Time [38], a refined version of Evict+Time,

allows attackers to determine not only the presence of a cache miss but also the exact lo-

cation within the victim’s code where it occurred. The new method proves highly effective,

significantly outperforming Evict+Time in efficiency.

Cache contention attacks fill a cache set and measure re-access time. Other processes

using the set evict the attacker’s cache lines, causing higher latency, which reveals their cache

activity. Prime+Probe [122] uses eviction sets to evict victim data from the cache instead

of using the clflush instruction without requiring page deduplication between attacker and

victim, making it more versatile across different environments.

The work [89] presents cross-core cache attack that leverages access time variations in

the LLC to retrieve sensitive information across virtual machine (VM) boundaries. The at-

tack exploits huge pages to function without memory deduplication, requiring only machine

co-location of the attacker and victim on separate cores. PRIME+ABORT [53] attack in-

troduces a novel approach to LLC attacks by eliminating the need for timing side channels,

which traditional LLC attacks rely on. Instead, PRIME+ABORT uses Intel’s Transactional

Synchronization Extensions (TSX), allowing it to bypass many existing defenses that target

timer-dependent attacks. Prime+Scope [169] is a high-precision cross-core cache contention

attack that enhances cache timing resolution by performing rapid, single-line cache con-

tention measurements.
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2.1.2.1 Constant-Time Implementations

Since the many of the µArch design choices, such as hierarchical cache structures, it is not

viable to eliminate the side-channel vulnerabilities entirely. CPU vendors, instead, publish

software development guidelines to mitigate the timing side-channels in the software using

constant-time programming techniques [87].

Constant-time implementations refer to cryptographic algorithms and methods that take

a constant amount of time to execute, regardless of the input size or values. This type of

implementation is essential for securing systems against timing attacks. A practical example

of this could be seen in the RSA decryption algorithm, where different execution paths can

be chosen based on the secret key bit. An attacker can utilize this timing discrepancy to infer

the secret key [106]. The implementation process of constant-time cryptographic algorithms

typically requires meticulous programming to ensure that no branches (such as if-then-else

constructs), loops, or other operations are contingent on the secret data. For instance,

cryptographic algorithms like AES should avoid data-dependent branches and employ bit-

wise operations, which are known to execute in constant time on most platforms.

1 bool equals(byte a[], size_t a_len,

2 byte b[], size_t b_len) {

3 for (size_t i = 0; i < a_len; i++)

4 if (a[i] != b[i]) // data dependent!

5 return false

6 return true;

7 }

Figure 2.1: An example of a data-dependent equality check logic that violates the
constant-time property. Adapted from [87].

Challenges exist in guaranteeing a truly constant-time implementation, particularly on

contemporary CPUs that possess features like out-of-order execution and speculative execu-

tion. This necessitates an in-depth understanding of both the cryptographic algorithm and

the hardware it functions on.

There are several examples of constant-time cryptographic algorithms, such as the constant-
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time carry-less multiplication utilized in AES-GCM implementations and the constant-time

modular inversion employed in elliptic curve cryptography.

A plethora of tools exist for automated verification of the constant-time criterion. How-

ever, there is a significant discrepancy between academic research and cryptographic en-

gineering practice. Despite the availability of tools for checking constant-time execution,

developers often overlook this due to resource constraints [93].

Considering the escalating sophistication of side-channel attacks, the increasing hetero-

geneity, and the constant evolution of computing platforms, security-critical software needs

to be continuously reevaluated for constant-time execution. Future research and develop-

mental efforts will perpetually focus on generating more secure and efficient constant-time

algorithms.

2.1.3 Transient Execution Attacks

In order to keep the pipeline occupied at all times, modern CPUs have sophisticated µArch

optimizations to predict the control flow and data dependencies, where some instructions

can be executed ahead of time. However, the predictions are not 100% accurate, causing

them to execute some instructions mistakenly. These instructions cause pipeline flush once

they are detected, and their results are never committed. Interestingly, µArch optimizations

make it possible to leak secrets. The critical period before the flush is commonly referred to

as the transient domain.

Transient execution attacks exploit speculative and out-of-order execution in CPUs to

access secret data in the transient domain, leaving traces in the cache that attackers can

analyze. Transient execution occurs when the CPU mispredicts the control flow or data

dependencies [158], or when the executed instructions require µcode assist or cause excep-

tions [28,174]. There are two classes of attacks in the transient domain: Spectre-type attacks

that exploit the speculative execution and Meltdown-type attacks which exploit delayed per-

mission checks and lazy pipeline flush in the re-order buffer [28].
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Spectre Since a typical software consists of branches and instruction/data dependencies,

modern CPUs have components for predicting conditional branches’ outcomes to execute

the instructions speculatively. These components are called branch prediction units (BPU),

which use a history table and other components to make predictions on branch outcomes.

Spectre v1 [105], also known as Bounds Check Bypass or Spectre-BHT, affects a wide

range of modern processors, including those from Intel, AMD, and ARM. It allows an attacker

to trick a program into speculatively executing code that should not have been executed,

potentially leaking sensitive data. In Spectre attacks, a attacker fills the branch history

table with malicious entries such that the BPU makes a misprediction. Then, the CPU

executes a set of instructions speculatively. As a result of misprediction, sensitive data can

be leaked through µArch components, for instance, by encoding the secret to the cache lines

to establish a covert channel.

1 void victim_function(size_t x){

2 if(x < size)

3 temp &= array2[array1[x] * 512];

4 }

Listing 2.1: Spectre-V1 C Code

For example, in the Spectre gadget in Listing 2.1, the 2nd line checks whether the user

input x is in the bound of array1. In a normal execution environment, if the condition is

satisfied, the program retrieves xth element of array1, and a multiple of the retrieved value

(512) is used as an index to access the data in array2. However, under some conditions,

the size variable might not be present in the cache. In such occurrences, instead of waiting

for size to be available, the CPU executes the next instructions speculatively. To eliminate

unnecessary stalls in the pipeline. When size becomes available, the CPU checks whether

it made a correct prediction or not. If the prediction was wrong, the CPU rolls back and

executes the correct path. Although the results of speculatively executed instructions are

not observable in architectural components, the access to the array2 leaves a footprint in
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the cache, making it possible to leak the data through side-channel analysis.

Spectre v1 is challenging to mitigate because it is a hardware-level issue, and traditional

software-based security measures are not sufficient to fully protect against it. Since Spec-

tre v1 is a complex vulnerability with widespread implications across different processor

architectures and generations, it has been an ongoing challenge for the industry to address

comprehensively.

NetSpectre [189] is the first remote variant of the Spectre attack, extending its reach be-

yond local code execution. NetSpectre marks a significant shift from local to remote attacks,

making Spectre a threat even to systems where no attacker-controlled code is executed,

including cloud environments.

SgxPectre attack [36] is a method of exploiting CPU vulnerabilities to compromise the

confidentiality and integrity of SGX enclaves. By manipulating branch prediction from

outside the enclave, attackers can temporarily alter the enclave’s control flow, producing

cache-state changes that reveal sensitive information within the enclave.

Meltdown Meltdown [119] is an attack that bypasses memory isolation by exploiting out-

of-order execution in modern processors to access protected kernel memory. This enables

attackers to read memory from other processes or virtual machines without permission.

Foreshadow [215] leaks SGX enclave secrets without needing kernel access or assumptions

about enclave code. Rogue In-flight Data Load (RIDL) [219] leaks in-flight data directly

from CPU line fill buffers without relying on cache or translation structures. Fallout [27]

showed faulting loads caused by a non-present page fault can leak leftover values from the

store buffer. ZombieLoad [187] uses µcode assists to transiently access data in the fill buffer.

Load Value Injection (LVI) [217] injects attacker-controlled values into a victim’s transient

execution. Downfall [141] exploits the gather instruction on AVX instruction set to leak

data from the vector registers of the victim processes.

Some researchers proposed new designs requiring a change in the silicon level [99, 108]
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while others proposed software solutions to mitigate transient execution attacks [165, 213].

Although these mitigations are effective against Spectre-type attacks, most of them are not

used because of the drastic performance degradation [29] or the lack of support in the current

hardware. Hence, Spectre-type attacks are not entirely resolved yet, and finding an efficient

countermeasure is still an open problem.

2.1.4 Analysis Techniques for µArch Vulnerabilities

2.1.4.1 Detecting Side-channels

Microwalk-CI [232] is a dynamic side-channel analysis framework for easy integration into a

JavaScript development workflow. Microwalk-CI adapts the existing Microwalk [231] frame-

work, which was originally designed for finding leakages in binary software. For this, Mi-

crowalk generates a number of execution traces for a set of random inputs and then compares

them using mutual information (MI), a robust measure that allows quantitatively assess the

extent of information leakage. MI can capture a wide range of potential leakages, including

those from the execution path and memory accesses. However, it is worth noting that Mi-

crowalk requires the tester to generate an input template file for each function tested and

requires interpretation of the report file as it generates entropy estimates.

2.1.4.2 Detecting Spectre Gadgets

There are two main program analysis techniques that are commonly used to detect Spectre

gadgets.

Taint Analysis: Taint analysis tracks outside user-controlled variables that possibly

leak any secret data. If the tainted variables are consumed by a new variable in the program

flow, the latter is also tainted in the information flow. This technique is commonly used in

vulnerability detection [151], malware analysis , [19,243] and web applications [18,153] where

user input misuses are highly likely. Similarly, in Spectre gadgets, the secret dependent op-

erations after conditional branches are potential secret leakage sources. In particular, when
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the branch decision depends on the user input, the secret is subject to be revealed in the

speculative execution state. In order to detect the Spectre-V1 based leakage in benign pro-

grams, the taint analysis technique is used in oo7 [225]. oo7 employs control flow extraction,

taint analysis, and address analysis to detect tainted conditional branches and their ability to

impact memory accesses. oo7 proposes selectively inserting a small number of fences instead

of inserting fences after every conditional branch to minimize the overhead experienced by

patching against Spectre. For instance, oo7 reports less than 2% performance overhead in

experiments on GNU Core utilities.

Symbolic Execution: Symbolic execution is a technique to analyze the program with

symbolic inputs. Each path of the conditional branch is executed symbolically to determine

the values, resulting in unexpected bugs. The symbolic execution is applied to detect poten-

tial information leakage in benign applications. For instance, Spectector [72] aims to identify

the memory and control leaks by supplying symbolic inputs to target functions. They in-

troduce the notion of speculative non-interference (SNI), and develop an algorithm based

on symbolic execution to automatically prove SNI or detect violations indicating Spectre

vulnerabilities which then can be patched. SNI requires that speculatively executed instruc-

tions do not leak more information into the microarchitectural state than what the intended

behavior does, i.e., what is leaked by the standard, non-speculative semantics.

KLEESpectre [223] aims to model cache usage with symbolic execution to detect spec-

ulative interference, which is based on KLEE symbolic execution engine. KLEESpectre is

evaluated on Kocher’s Spectre v1 variants [104] and on cryptographic libraries libTomCrypt,

Linux-tegra, openssl and hpn-ssh.

Pitchfork [30] is a symbolic analysis tool that verifies that code is constant-time with

respect to secret values such as encryption keys or message plaintexts. Pitchfork uses under-

constrained symbolic execution augmented with dynamic taint tracking to verify constant-

time execution. In particular, it uses a shadow memory to track secrets even as they are

stored and loaded from memory. Pitchfork also allows the specification of function hooks.
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This allows Pitchfork to verify a code at the protocol level while ignoring the implementation

of crypto primitives. Pitchfork was used to verify that a large portion of Mozilla’s NSS cryp-

tographic library is constant-time while also finding several constant-time vulnerabilities.

While the symbolic execution provides a good understanding of underlying bugs for

different input values, it is challenging to apply for large-scale projects due to high resource

demand.

2.2 Machine Learning

2.2.1 Deep Neural Networks

Deep Neural Networks (DNN) is a sub-field of Machine Learning, which are Artificial Neural

Networks inspired by the biological neural cells of animal brains. DNN models are imple-

mented as computational graphs where edges represent model weights, nodes represent linear

(sum, add, convolution, etc.), and non-linear operations (sigmoid, softmax, relu, etc.). DNN

models are formed by multiple layers of weight parameters where each layer learns a different

level of abstraction of the features hierarchically [247].

DNN models can be broadly classified into two categories: generative and discriminative

models. Generative models focus on learning the joint probability distribution between the

input data and their labels, whereas discriminative models aim to learn the conditional

probability distribution of the labels given the input data.

Discriminative models that are mostly trained in a supervised manner, i.e., with labeled

data. Discriminative models classify the input data into pre-determined classes by learning

the boundary between the classes. More formally, a DNN model f is parameterized by θ

maps the input samples {xi} into their corresponding classes {yi}.

Training The model parameters θ are optimized using the data pairs {xi, yi} according to

the following objective,
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min
θ

F (θ) =
∑
i

[
ℓ
(
f(xi, θ), yi

)]
,

where F is the objective function, ℓ is a loss function, ∆θ is the change in the model weights.

The model is updated by backpropagating the errors through the layers [183]. The training

procedure can be a computationally heavy process since the size of the training data, and

the number of parameters to train can be enormous. Therefore, training is usually done on

accelerator hardware, such as GPU and ASIC.

Inference After the model weights reach an acceptable performance on the training data

set, they can be deployed as a part of the service. In the inference stage, the model weights

are usually kept unchanged, and the model’s output is used as the classifier output. Since

the inference phase does not need any error backpropagation, it takes much less time than

the training phase, and CPU can be preferred depending on the time/cost/power trade-off.

2.2.2 Natural Language Processing

2.2.2.1 seq2seq Architecture

Sequence to sequence mapping is a challenging process since the text data set has no numeric

values. First, the text data is converted to numeric values with embedding methods [138,140].

Then, a DNN model is trained with vector representations of the text.

A new approach called seq2seq [196] was introduced to model sequence-to-sequence rela-

tions. The seq2seq architecture consists of encoder and decoder units. Both units leverage

multi-layer Long Short Term Memory (LSTM) structures where the encoder produces a

fixed dimension encoder vector. The encoder vector represents the information learned from

the input sequence. Then, the decoder unit is fed with the encoder vector to predict the

input sequence’s mapping sequence. After the end of the sequence token is produced by the

decoder, the prediction phase stops. The seq2seq structure is commonly used in chatbot
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engine [171] since sequences with different lengths can be mapped to each other.

2.2.2.2 Generative Adversarial Networks

A specialized method of training generative models was proposed by Goodfellow et al. , [65]

called generative adversarial networks (GANs). The generative models are trained with

a separate discriminator model under an adversarial setting. In [65], the training of the

generative model is defined as,

min
G

max
D

V (D,G) = Ex∼pdata(x)[log D(x)]

+ Ez∼pz(z)[log(1−D(G(z)))].

(2.1)

In Equation 2.1, the generator G and the discriminator D are trained in such a way

that D, as a regular binary classifier, tries to maximize its confidence D(x) on real data x,

while minimizing D(G(z)) on generated samples by the G. At the same time, G tries to

maximize the confidence of discriminator D(G(z)) on generated samples G(z) and minimize

D(x) where x is the real data.

MaskGAN [56] is a type of conditional GAN technique to establish a good performance

out of traditional GANs. MaskGAN is based on seq2seq architecture with an attention

mechanism which improves the performance of the fixed-length encoder vectors. Each time

a prediction is made by the decoder unit, a part of the input sequence is used instead of the

encoder vector. Hence, each token in the input sequence has a different weight on the decoder

output. The main difference of MaskGAN from other GAN-based text generation techniques

is the token masking approach, which helps to learn the missing texts in a sequence. For

this purpose, some tokens are masked that is conditioned on the surrounding context. This

technique increases the chance of generating longer and more meaningful sequences out of

GANs.
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2.2.2.3 Attention-only Models

Although recurrent models with attention mechanisms learn the representations of long

sequences, attention-only models, namely Transformer architectures [220], are shown to

be highly effective in terms of computational complexity and performance on long-range

dependencies. Similar to seq2seq architecture, the Transformer architecture consists of an

encoder-decoder model. The main difference of Transformer is that recurrent models are not

used in encoder or decoder units. Instead, the encoder unit is composed of L hidden layers

where each layer has a multi-head self-attention mechanism with A attention heads and a

fully connected feed-forward network. The input embedding vectors are fed into the multi-

head attention, and the output of the encoder stack is formed by a feed-forward network,

which takes the output of the attention sub-layer. The decoder unit also has L hidden layers,

and it has the same sub-layers as the encoder. In addition to one multi-head attention unit

and one feed-forward network, the decoder unit has an extra multi-head attention layer

that processes the encoder stack output. To process the information in the sequence order,

positional embeddings are used with token embeddings where both embedding vectors have

a size of H.

Keeping the same Transformer architecture, Devlin et al. [51] introduced a new language

representation model called BERT (Bidirectional Encoder Representations from Transform-

ers), which surpasses the state-of-the-art scores on language representation learning. BERT

is designed to pre-train the token representation vectors of deep bidirectional Transformers.

For a detailed description of the architecture, we refer the readers to [51, 220]. The heavy

part of the training is handled by processing unlabeled data in an unsupervised manner. The

unsupervised phase is called pre-training, which consists of masked language model training

and next sentence prediction procedures. The supervised phase is referred to as fine-tuning,

where the model representations are further trained with labeled data for a text classifica-

tion task. Both phases are further explained in detail for Spectre gadget detection model

in Section 4.4.
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2.2.3 Reinforcement Learning

In RL, the objective is for an agent to learn a policy πθ(a|s), parameterized by θ, which

maximizes the expected cumulative reward through its chosen actions in an environment.

The policy gradient method [198] computes the gradient of the expected reward with respect

to the policy parameters, allowing the agent to directly update the policy by following the

gradient. Formally, the objective function J(θ) can be defined as:

J(θ) = Eπθ

[
T∑
t=0

rt

]
, (2.2)

where rt is the reward at time step t, and the expectation is over the trajectories induced

by the policy πθ. The policy is updated by adjusting θ in the direction of the gradient ∇θJ(θ)

using gradient ascent.

One of the major challenges with vanilla policy gradient methods is the high variance

of the gradient estimates, which can lead to unstable learning. Additionally, large updates

to the policy parameters θ can cause dramatic changes to the policy, potentially leading to

performance collapse.

Trust Region Policy Optimization (TRPO) [185] was proposed to address this issue by

enforcing a constraint on the size of policy updates using a trust region. TRPO introduces

the following constrained optimization problem:

max
θ

Eπθ

[
πθ(a|s)
πθold(a|s)

Â(s, a)

]
subject to Es [DKL (πθold∥πθ)] ≤ δ, (2.3)

where DKL is the Kullback-Leibler (KL) divergence, Â(s, a) is the advantage estimate,

and δ is a small positive value controlling the step size. However, TRPO is computation-

ally expensive due to the need for second-order optimization to enforce the KL-divergence

constraint.

Proximal Policy Optimization (PPO) [186] simplifies TRPO by replacing the hard con-

straint on policy updates with a penalty or by using a clipped objective function. The key
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idea behind PPO is to ensure that policy updates are “proximal” to the current policy,

preventing drastic updates that could lead to instability.

In this work, we use PPO with clipped objective. In this approach, PPO clips the prob-

ability ratio πθ(a|s)
πθold

(a|s) to lie within a small interval around 1, preventing large updates. The

clipped objective is defined as:

LCLIP(θ) = E
[
min

(
r(θ)Â(s, a), clip(r(θ), 1− ϵ, 1 + ϵ)Â(s, a)

)]
, (2.4)

where r(θ) = πθ(a|s)
πθold

(a|s) is the probability ratio, and ϵ is a small hyperparameter that limits

how far the policy is allowed to change. By clipping the probability ratio, PPO discourages

overly large updates while still allowing for sufficient exploration of the policy space.
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Chapter 3

Search of Hardware Specific Fault

Targets on Security-Sensitive Software

3.1 Motivation

DNN models are known for their powerful feature extraction, representation, and classifica-

tion capabilities. However, the large number of parameters and the need for a large training

data set make it hard to interpret the behavior of these models. The fact that an increasing

number of security-critical systems rely on DNN models in real-world deployments raises

numerous robustness and security questions. Indeed, DNN models have been shown to be

vulnerable against imperceivable perturbations to input samples which can be misclassified

by manipulating the network weights [66,152,199].

Emboldened by recent physical fault injection attacks such as Rowhammer, an alternative

approach was proposed that directly targets the model when it is loaded into memory. There

are two advantages of this attack:

1. Alternative approaches assume modifications are introduced to the model, either during

distribution as part of a repository or after installation. Such malicious tampering may

be challenging to implement in practice and can easily be detected.
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2. In contrast, a Rowhammer-based attack can remain stealthy since the model is only

modified in real-time while running in memory, and no input modification is required.

Once the program is unloaded from memory, no trace of the attack remains except

misclassified outputs.

Recently, [81, 240] showed that flipping a few bits in DNN model weights in memory

while succeeding in achieving misclassification has the side-effect of significantly reducing

the accuracy. Other works [16, 125] addressed this problem by tweaking only a minimum

number of model weights that makes a DNN model misclassify a chosen input to a target

label. This approach indeed achieves the objective with only a slight drop in classification

accuracy.

Nevertheless, whether a practical attack such as injecting a backdoor to DNNs can indeed

be achieved in a realistic and stealthy manner using Rowhammer in hardware is still an open

question. Earlier approaches assume that Rowhammer can flip bits with perfect precision in

the memory. This is far from what we observe in reality: only a small fraction of the memory

cells are vulnerable; see Section 3.4.1.2 for further details. Therefore existing proposals fall

short of presenting a practical DNN backdoor injection attack using Rowhammer. This

motivates us to reconsider the backdoor injection process under new constraints, including

the training algorithms.

Our contributions: In this work, we present a backdoor injection attack on a deployed

DNN model using Rowhammer. This result shows that, indeed, real-life deployments are

under threat from backdoor injection attacks. More work needs to be done to secure deployed

models from fault injection attacks used for everyday tasks by end-users. More specifically,

• for the first time, we present an end-to-end backdoor injection attack realized on actual

hardware on a classifier model using Rowhammer as the fault injection method

• we thoroughly characterize DRAMs for bit-flips using extensive Rowhammmer experi-

ments. Our results show that previously proposed backdoor injection techniques make

overly optimistic assumptions about Rowhammer,
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• introduce a more realistic Rowhammer fault model, along with new stringent constraints

on model modifications necessary to achieve a real-life attack,

• propose a novel constrained optimization-based algorithm that can map model weights to

identify vulnerable bit locations in the memory to create a backdoor,

• we further reduce the number of modifications for the backdoor by jointly optimizing for

trigger patterns, vulnerable locations, and model parameter values.

• we demonstrate the practicality of our approach, targeting a deployed ResNet-20 model

trained on CIFAR-10 using PyTorch, achieves over 91% test accuracy and 94% attack

success rate where we inject the backdoor by actually running Rowhammer while the

model is residing in a DRAM. This high level of accuracy is reached by flipping only 10

out of 2.2 million bits.

• by running experiments, we show that the state-of-the-art countermeasures against bit-flip

attacks are either ineffective, e.g., weight reconstruction, piece-wise weight clustering, in-

troduce too high of an overhead, e.g., weight encoding, or significantly reduce the accuracy,

e.g., binarization-aware training, to defend against our attack.

3.2 Backdoor Attacks on DNN Models

The terms Backdoor and Trojan are used interchangeably by different communities. Here

we use Backdoor for consistency. In DNN models, we define a Backdoor as a hidden feature

that causes a change in the behavior triggered only by a particular type of input. In the

literature, backdooring is applied with either benevolent intents, such as watermarking the

DNN models [7,191], or with malicious purposes [14,16,37,41,71,126], as a Trojan to attack

the models.

In this dissertation, we focus on Backdoor as a type of Trojan exploited by an attacker

to cause targeted misclassification. A clean DNN model f is expected to perform similarly

when a small amount of disturbance exists on the input data. Therefore, f(xi +∆x, θ) = yi
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Figure 3.1: Backdoored Model behavior with clean inputs (top) and trigger added inputs
(bottom). Fault injection to the model changes the behavior of the classifier, as shown by

the confusion matrices.

if and only if f(xi, θ) = yi, where ∆x is a small disturbance on the input x. We say a DNN

model f has a backdoor if f(xi, θ) = yi and f(xi +∆x, θ) = ỹ.

Earlier works [14, 41, 71, 126] demonstrated that backdoor attacks pose a threat to the

DNN model supply chain. Specifically, DNN models can be backdoored during the training

phase if the model training is wholly or partially (transfer learning) outsourced [71]. More-

over, compromised model-training code can be an attack vector for backdoor attacks since

it can train a backdoored model even if the model is trained with the local resources and

clean training data set [14].

3.3 Threat Model

Same as in earlier works [71,81,126,176,240], we assume that the attacker

• knows the model architecture, parameters and the task of the target model;

• does not have access to the training hyperparameters or the training data set;

• has a small percentage of the unseen test data set;
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• is involved only after the model deployment in a cloud server and therefore does not

need to modify the software and hardware supply chain;

• resides in the same physical memory as the target model;

• has no more than regular user privileges (no root access).

Such threat models are well motivated in shared cloud instances targeting a co-located host

running the model and in sandboxed browsers targeting a model residing in the memory of

the host machine [42,49,239]. Moreover, the previous research on model stealing attacks [47,

95, 164, 212, 244] validates our white-box attack assumption. The test data required by our

attack does not belong to the victim and is not in the training data set. Hence, it can be

easily collected and labeled by the attacker since the task of the target model is known.

To better understand our attack, we illustrate an example in Figure 3.1. The attack

works as follows:

1. Offline Phase - Profiling Target Model and Memory: By studying the model parameters

and the memory, the attacker generates a trigger pattern and determines the vulnerable

bits in the target model.

2. Online Phase - Rowhammer Attack: After the target model is loaded into the memory,

using Rowhammer, the attacker flips the target bits by only accessing its own data

that resides in the neighboring rows of the weight matrices in the DRAM.

3. Targeted Misclassification: After the backdoor is inserted, the model will misclassify

trigger-added input to the target class. The misclassification will persist until the

backdoored model is unloaded from the memory. Since the model in persistent storage

(or in the software distribution chain) is untouched, malicious modification to the

model is harder to detect.
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3.4 Backdoor Injection using Rowhammer

3.4.1 Offline Attack Phase

In the offline phase of the attack, we optimize the trigger pattern and the bit-flip locations

in the weight matrices. To do so, we first extract the profile of vulnerable bits in the DRAM

and then train the backdoor model with new constraints.

3.4.1.1 Memory Profiling For Adjacent Rows

For the Rowhammer attack to work, we need to locate physical rows adjacent to victim

rows that require finding physically contiguous memory addresses. We exploit SPOILER

vulnerability [91] in Intel processors to determine which virtual addresses within an array

are contiguous physically.

After performing SPOILER and determining which addresses are contiguous physically,

these addresses need to be filtered even further to addresses that are within the same bank.

This is again performed using another timing side-channel attack known as row conflict [167],

which measures the difference in read times between two addresses to determine if the row

buffer for the bank was cleared, resulting in a longer read time and extrapolating bank

continuity.

3.4.1.2 Memory Profiling For Faults

Memory profiling is a process of finding vulnerable addresses in the DRAM. This process

can be performed before the victim starts running. For DDR3 DRAMs, we implement a

double-sided Rowhammer attack where we place a victim row between two attacker-owned

rows. We set the victim rows to all zero and attacker rows to all one and repeatedly access

the attacker rows. Then we check if there is any zero to one flip in the victim row. We find

the one to zero flips similarly. For DDR4 systems, double-sided Rowhammer does not work

due to the TRR mitigation implemented by the DRAM vendors. Therefore, we designate
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alternating rows to be attacker and victim.

Assuming the bit flips are uniformly distributed over a memory page and a faulty memory

cell can be flipped only in one direction, given a chain of bit offset {b0, b1, ..., bk+l−1} in a

memory page, the conditional probability of finding a suitable target page t in N flippy pages

can be calculated as

p
(
t|{bn0→1} ∈ {0→ 1}, {bn1→0} ∈ {1→ 0}

)
=

1−
(
1−

k−1∏
i=0

n0→1 − i

S − i
×

l−1∏
j=0

n1→0 − j

S − k − j

)N

, (3.1)

where n0→1 and n1→0 are the average numbers of faulty memory cells in a page, flippable in

the direction from 0 to 1 and 1 to 0 respectively, which are device-dependent values, k and l

are number of bit locations which need to be flipped in the direction from 0 to 1 and 1 to 0

respectively, and S is the total number of bits in a page. Previous research [149] shows that

n0→1 and n1→0 are almost equal to each other. Therefore, Equation 3.1 can be reduced as,

p
(
t|{bn0→1} ∈ {0 → 1}, {bn1→0} ∈ {1 → 0}

)
≈ 1 −

(
1 −

k+l−1∏
i=0

n0→1 + n1→0 − i

S − i

)N

. (3.2)

It takes 94 minutes to profile 128MB of memory, but this is done offline before the victim

starts running. Multiple buffers of 128MB can be taken at a time to profile most of the

available memory, but a single big buffer makes the system unresponsive as it may corrupt

other Operating System (OS) processes. Figure 3.2 shows the sparsity of the bit flips in the

profiled 128MB buffer and one of the 4KB pages in DDR3 and DDR4 DRAM chips.

Although we use state-of-the-art memory hammering techniques, we have found 34 bit

flips in a 4KB page in DDR3. Overall, in the 128MB buffer, we have found 381,962 bit

flips which are just 0.036% of the total cells in the buffer, as illustrated in Figure 3.2. For

profiling DDR4, we use a 15-sided Rowhammer attack. We tested 6 different DDR4 chips

and averaged the number bit flips per page for each device. We also calculated the average
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Figure 3.2: The bit flip locations in the profiled 128MB memory buffer and one of the 4KB
pages show the sparsity of the bit flips. Only about 0.036% of the DRAM cells in the

profiled memory are found to be vulnerable.

number of bit flips per page for the memory profiles published by earlier work [201] and

summarized the results in Table 3.1.

Specifically, we can estimate the probability of finding a suitable target page by fixing

the DRAM-specific parameter n0→1 and n1→0 for a DRAM using Equation 3.2. In line with

the previous research [149] we also observe that number of bit flips from 0 to 1 and 1 to 0

are almost equal. Therefore, using the results of our profiling experiments, we estimate that

n0→1 + n1→0 = 34. Total number of bits in a page is S = 32, 768, and the total number

of pages is N = 32, 768 in a 128MB memory buffer where the page size is 4KB. Therefore,

when k = 1, i.e., for only one bit offset {b0} in a page, we can calculate the probability of

finding a target page in a 128MB memory buffer as p(t|{b0}) ≈ 1. Whereas for more than

one-bit offsets, the probability of finding a target page vanishes quickly. Specifically, for

{b0, b1}, p(t|{b0}) = 0.03 and for p(t|{b0, b1, b2}) = 0.00003. Therefore, in later experiments,

we assume we can only flip one bit in a memory page.
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Table 3.1: Average number of bit flips per memory page for 14 DDR3 and 6 DDR4 chips.
The tags in DRAM columns represent different brand/model information. The results for
DDR3 results are calculated from double-sided Rowhammer profiles [201]. DDR4 results

are from the chips we profiled using n-sided Rowhammer.

DRAM
Average # of Flips

Per Page
DRAM

Average # of Flips
Per Page

DDR3

A1 12.48 E1 12.46
A2 1.92 E2 2.02
A3 1.11 F1 28.77
A4 15.85 G1 1.62
B1 1.05 H1 1.66
C1 1.60 I1 8.28
D1 1.08 J1 1.25

DDR4
K1 100.68 L2 13.98
K2 109.48 M1 2.04
L1 3.12 N1 2.72

3.4.1.3 Constrained Fine-Tuning with Bit Reduction (CFT+BR)

We propose a novel joint learning framework based on constrained optimization to learn the

bit flip pattern on the network weights as well as the data trigger pattern simultaneously.

Also, different from the literature, we do not rely on the last layer only to find vulnerable

weights. Instead, we achieve a wider attack surface on the model with constraints placed on

the number and location of faults.

To preserve the performance on clean data, given a collection of test samples {xi} and

their corresponding class labels {yi}, we propose optimizing the following objective:

min
∆θ∈∆Θ

max
∥∆x∥∞≤ϵ

F (∆θ,∆x) =∑
i

[
(1− α) · ℓ

(
f(xi, θ +∆θ), yi

)
+ α · ℓ

(
f(xi +∆x, θ +∆θ), ỹ

)]
, (3.3)

where ∆θ, ∆x denote the weight modification pattern and the data trigger pattern, ỹ de-

notes the target label, ℓ denotes a loss function, f denotes the network parameterized by θ

originally, α ∈ [0, 1] denotes a predefined trade-off parameter to balance the losses on clean
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Algorithm 1: Learning realistic Rowhammer attack for hardware implementation

Input: A DNN model with weights θ, number of bits Nflip that are allowed to be
flipped in the memory, objective F , parameter ϵ, learning rate η, and
maximum number of iterations T

Output: Backdoored model θ∗ and trigger pattern ∆x∗

1 ∆θ∗ ← ∅,∆x∗ ← ∅;
2 for t ∈ [T ] do
3 if update the trigger == true then
4 ∆x∗ ← ∆x∗ + ϵ · sgn(∇∆xF (∆θ∗,∆x∗));
5 end
6 M← Group Sort Select(|∇∆θF (∆θ∗,∆x∗)|,
7 Nflip,

′ descending′);
8 ∆θ∗ ← ∆θ∗ − η · [∇∆θF (∆θ∗,∆x∗)]M;
9 if bit reduction == true then

10 θ∗ ← Floor((θ +∆θ∗)⊕ θ)⊕ θ;
11 end

12 end
13 return θ∗,∆x∗

data and triggered data. A large α value would cause the attack to give a more aggressive

effort to increase the Attack Success Rate while sacrificing Test Accuracy, and a low α value

would cause the attack to preserve the Test Accuracy while sacrificing the Attack Success

Rate. Ideally, a moderate α value should be chosen to get a high Attack Success Rate while

preserving the Test Accuracy as much as possible. Note that ∆Θ denotes a feasible solution

space that is restricted by the implementation requirements of the hardware fault attack.

Rowhammer attack restriction in hardware: allows realistically to flip only about

one bit per memory page due to the physical constraints. Since the potentially vulnerable

memory cells in the DRAM are sparse, the probability of finding a suitable target page to

locate the victim is very low for more than one bit flip offsets (See Section 3.4.1.2). Such a

restriction forms the feasible solution space ∆Θ in learning the bit flip locations sparsely.

To solve the constrained optimization problem defined in Equation 3.3, we also propose

a novel learning algorithm as listed in Algorithm 1 that consists of the following four steps:

Step 1. Learning data trigger pattern ∆x: The goal of this step is to learn a trigger

that can activate the neurons related to the target label ỹ to fool the network. Trigger
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pattern generation starts with an initial trigger mask. Then, we use the Fast Gradient Sign

Method (FGSM) [66] to learn the trigger pattern. The update rule is defined as

∆x = ∆x∗ + ϵ · sgn(∇∆xF (∆θ∗,∆x∗)), (3.4)

where ∆θ∗,∆x∗ denote the current solutions for the two variables, ∇ denotes the gradient

operator, and sgn denotes the signum function. ϵ ≥ 0 denotes another predefined parameter

to control the trigger pattern. Since it acts as a learning rate of the trigger, smaller values

update the trigger slower but may be more effective in finding the optimal pattern.

Step 2. Locating vulnerable weights: Now, given a number of bits that need to be

flipped, Nflip, our algorithm learns which parameters are the most vulnerable. In this step,

we apply two constraints to the optimization:

• C1. Locating one weight per bit flip towards minimizing our objective in Equation 3.3

significantly;

• C2. No co-occurrence in the same memory page among the flipped bits.

Recall that when a DNN model is fed into the memory, the network weights are loaded

sequentially page-by-page, where each page is fixed-length and stored contiguously. We can

view this procedure as loading a long vector by vectorizing the model. Therefore, to guarantee

we choose at most one weight per memory page, we divide the network weight vector into

Nflip groups as equally as possible, as illustrated in Figure 3.3. The grouping is done by

an integer division operation on the parameter index over all parameters. If the index of

a parameter is iw, the group ID of that parameter is determined as iwdiv(4096 ∗ Ngroup)

where Ngroup is the number of pages per bit flip, and div is integer division operation.

Ngroup depends on the chosen number of bit flips Nflip and can be calculated as Ngroup =

Nwdiv(4096 ∗Nflip) for a DNN model with number of parameters, Nw. After grouping the

parameters, we rank the weights per group based on the absolute values in the gradient over

∆θ, i.e., |∇∆θF | where | · | denotes the entry-wise absolute operator, in descending order.
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Figure 3.3: The illustration of targeted model weights across the DNN model weight pages
in the memory. The bulls-eye denotes the targeted bit location in a page.

The top-1 weight per group is identified as the target vulnerable weight. Note that, given

the Constraint (C2), Nflip cannot be larger than the number of pages that the DNN model

weights occupy in the memory to guarantee there is at least one full page in every group.

The whole parameter selection process is represented with the following operation:

M← Group Sort Select(|∇∆θF (∆θ∗,∆x∗)|, Nflip,
′ descending′), (3.5)

Step 3. Adversarial fine-tuning Now, given a collection of located vulnerable

weights, denoted byM, we only need to update these weights in backpropagation as follows:

∆θ = ∆θ∗ − η · [∇∆θF (∆θ∗,∆x∗)]M, (3.6)

where [·]M denotes a masking function that returns the gradients for the weights in M,

otherwise 0’s, and η ≥ 0 denotes a learning rate.

Step 4. Bit reduction To meet the physical constraints of the Rowhammer, the final

part of our attack procedure requires bit reduction. Rowhammer can only flip a very low

number of bits in a 4KB memory page, and more than one faulty memory cell almost never

coexists within a byte. Therefore, we define a bit reduction function as Floor(θ⊕ θ∗), where

⊕ denotes the bit-wise summation, and function Floor rounds down the number by keeping

the most significant nonzero bit only. For instance, letting θ = 11012 and θ∗ = 10102, then
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Floor(θ⊕ θ∗) = Floor(01112) = 1002. In this way, we ensure that only one bit is modified in

a selected weight while maintaining its change direction and amount as much as possible.

3.4.2 Online Attack Phase: Flipping Bits in the Deployed Model

When we access a file from the secondary storage, it is first loaded into the DRAM and when

we close the file, the OS does not delete the file from DRAM to make the subsequent access

faster. If the file is modified, the OS sets the dirty bit of that modified page and writes

back according to the configured policy. Otherwise, the file remains cached unless evicted

by some other process or file. As Rowhammer is capable of flipping bits in DRAM, we can

use it in the online attack phase to flip the weights of the DNN file as it is loaded in the

page cache. The weight file is divided into pages and stored in the page cache. We can flip

our target bits as identified by the backdoored parameters θ∗, in Section 3.4.1. The OS does

not detect this change as it is directly made in hardware by a completely isolated process,

and it keeps providing the page cached modified copy to the victim on subsequent accesses.

Thus, the attack remains stealthy. In the online phase, we need to flip bits in the weight file

in the required pages and page offsets. We achieve this in three main steps.

3.4.2.1 Releasing the Flippy Rows

Flipping targeted bits in the model weights requires manipulating the memory mapping of

the weight file and placing the target pages to previously found flippy physical addresses. To

control the memory mapping, we exploit the per-CPU page frame cache. Page frame cache

is an optimization implemented in the Linux kernel to utilize hardware caches better in the

local CPU by reallocating the recently unmapped page frames in first-in-last-out order [24].

As earlier works showed [33,110,240], an attacker process can reliably map the victim page

to the recently unmapped pages by exploiting the page frame cache. This unmapping-

remapping process is shown by the pseudo-code in Listing 3.1. Although we do not need

bit flips in all pages of the weight file, we need the target pages to be mapped to previously
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1 buffer = mmap(baitPages * PAGESIZE)

2 munmap(flippyPageAddr, PAGESIZE)

3 for(i = 0; i < bait_pages; i++)

4 munmap(&buffer[i*PAGESIZE], PAGESIZE)

Listing 3.1: Pseudo-code showing how pages can be forced into a specific area in memory

determined flippy page locations. We use a buffer with size baitPages× PAGESIZE to

make sure the parameters we do not target in the weight file are not mapped into the flippy

locations. The number of flippy pages and baitPages should sum up to the total number

of memory pages consumed by the weight file.

We match the target pages in the weight file to the flippy locations and the remaining

pages to the non-flippy locations in our buffer. After obtaining a one-to-one mapping between

the weight file and our buffer, we start unmapping in the reverse direction to fill the page

frame cache.

3.4.2.2 Mapping the Model Weights to Flippy Rows

After releasing the flippy pages and buffer, we immediately map the whole weight file

from start to end using mmap function. The OS automatically maps the weight file to the

unmapped locations in the buffer in the right order. An example case is shown in Figure 3.4

for a quantized ResNet20 model. Since all physical addresses match with the released pages

of our buffer, there is a one-to-one mapping.

Another way to bring only the target pages of the weight file to the memory is by stating

the file offset in the mmap function and using fadvise with FADV RANDOM flag to prevent the

neighboring pages of the file prefetched by the OS, as proposed in [240]. However, in our

experiments, we observe that using fadvise does not reliably prevent prefetching.

3.4.2.3 Flipping Bits in the Weight File

Finally, the attacker rows are accessed repeatedly to flip bits at the same offsets as found

in the offline phase but this time on the weight file. In our experiments, we use n-sided
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Figure 3.4: Physical Address of released pages vs ResNet20 weight file. First pages of the
weight file are mapped to the last released pages of our buffer.

Rowhammer pattern [59] with 7 aggressor rows on DDR4 systems to bypass TRR protection

and reproduce the bit flips found in the offline phase. Note that additional bit flips can

occur if more than one bit flip is found within a single page. We evaluate the effect of these

additional bit flips in Section 3.5.

After completing all the steps in Online Phase, the corrupted weights stay in the memory,

and the attacker is able to add the pattern generated in Offline Phase to any image to trigger

the backdoor and misclassify the input in a targeted way.

3.4.3 Weight Quantization

The weights are stored as Nq-bit quantized values in the memory as implemented in NVIDIA

TensorRT [137], a high-performance DNN optimizer for deployment that utilizes quantized

weights [155]. Essentially, a floating-point weight matrixWfp is re-encoded into Nq-bit signed

integer matrix Wq as Wq = round(Wfp/∆w) where ∆w = max(Wfp)/(2
Nq−1 − 1). In our

experiments, weights are 8-bit quantized and stored in two’s complement forms.
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3.5 Evaluation

3.5.1 Experimental Setup

To demonstrate the viability of our attack in the real world, we implemented it on an 8-

bit quantized ResNet-18 model trained on CIFAR-10 using PyTorch v1.8.1 library. The

clean model weights that are trained on CIFAR-10 are taken from [176] for ResNet-18 and

from [84] (580 stars on GitHub) for other ResNet models. Moreover, we experimented on

larger versions of ResNet models, such as ResNet50, trained on the ImageNet data set. For

the models trained on ImageNet, we use pre-trained models of Torchvision library (9.1K stars

on GitHub), which has been downloaded 28 million times until now [209]. We run the offline

phase of our attack on NVIDIA GeForce GTX 1080Ti GPU and Intel Core i9–7900X CPU.

Rowhammer experiments are implemented on DDR3 DRAM of size 2 GB (M378B5773DH0-

CH9) and DDR4 DRAM of size 16 GB (CMU64GX4M4C3200C16). The online phase ex-

periments are conducted on a system running Ubuntu 20.04.01 LTS with a 5.15.0–58-generic

Linux kernel installed, using a DDR4 DIMM with part number CMU64GX4M4C3200C16.

The inference is done on an Intel Core i9-9900K CPU with a Coffee Lake microarchitecture.

DRAM row refresh period is kept at 64ms which is the default value in most systems. We

use 7-sided Rowhammer to flip bits in the memory. We will provide an explanation for how

we decide the number of aggressor rows in Section 3.5.3.

We compare our approach with BadNet [71], and TBT [176] as well as fine-tuning (FT)

the last layer. We also include the output of our Constrained Fine Tuning (CFT) without

bit reduction in Table 3.2 for comparison. We selected the baseline methods with the aim

of creating a backdoor-injected model. We excluded the non-backdoor attacks, such as

Deephammer [240], and Terminal Brain Damage [81], in the performance comparison since

they only aim to degrade the accuracy of the model. In contrast, we aim to keep the accuracy

as high as possible while increasing the Attack Success Rate. For the offline phase results,

we keep all the bit flips in the weight parameters assuming they are all viable. In the online
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phase results, we keep the bits that are possible to be flipped by Rowhammer and exclude

the others. We use 128 images from the unseen test data set for all the experiments in

CIFAR-10. TA and ASR metrics are calculated on an unseen test data set of 10K images.

In all experiments, we used α = 0.5 for Algorithm 1. The trigger masks are initialized as

black square on the bottom right corner of the clean images with sizes 10x10 and 73x73

on CIFAR-10 and ImageNet, respectively. ϵ in Equation 3.4 is chosen as 0.001. For the

ImageNet experiments, we use 1024 images from the unseen test data set to cover all 1000

classes. TA and ASR metrics are calculated on unseen test data set of 50K.

3.5.2 Evaluation Metrics

Number of Bit Flips (Nflip): As in [16, 81, 176, 240], the first metric we use to evaluate

our method is Nflip, which indicates how many bits are flipped in the new version of the

model. The Nflip has to be as low as possible because only a limited number of bit locations

are vulnerable to the Rowhammer attack in DRAM. As the Nflip increases, the probability

of finding a right match of vulnerable bit offsets decreases. Nflip is calculated as Nflip =∑L
l=1 D(θ[l], θ∗[l]), where D is the hamming distance between the parameters θ[l] and θ∗[l] at

the l-th layer in the network with L layers in total.

DRAM Match Rate (rmatch): After a Rowhammer-specific bit-search method runs,

the outputs are given as the locations of target bits in a DNN model. However, not all of

the bit locations are flippable in the DRAM. Therefore, we propose a new metric to measure

how many of the given bits actually match with the vulnerable memory cells in a DRAM

which is crucial to find out how realistic is a Rowhammer-based backdoor injection attack.

rmatch is calculated as, rmatch = nmatch

Nflip
×(1− δ

S
)×100 where nmatch is the number of matching

bit flips, Nflip is the total number of bit flips, S is the number of bits in a page, and δ is the

number of accidental bit flips within a page. Since the bit flip profile varies among different

DRAMs, even between the same vendors and models, rmatch is a device-specific metric.

Test Accuracy (TA): In order to evaluate the effect of backdoor injection to the main
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task performance we use Test Accuracy as one of the metrics. Test Accuracy is defined as the

ratio of correct classifications on the test data set with no backdoor trigger added. Ideally,

we expect the backdoor injection methods to cause minimal to no degradation in the Test

Accuracy in the target DNN models.

Attack Success Rate (ASR): We define the Attack Success Rate as the ratio of

misclassifications on the test data set to the target class when the backdoor trigger is added

to the samples. Attack Success Rate indicates how successful a backdoor attack is on an

unseen data set.

3.5.3 Rowhammer Attack on Deployed Model - Online

We experiment the online phase of the attack on DDR3 and DDR4 DRAM chips. We

empirically observe that when there are multiple bits required to be flipped on the same

4KB page in a particular direction ({0 → 1} or {1 → 0}), there is no matching target

page in the 128 MB Rowhammer profile. This observation shows that multiple bit flips at

desired page offsets and bit-flip direction is an unrealistic assumption. On the other hand,

we observe that there is always a matching page in the profiled memory buffer with a bit flip

in the desired location and flip direction if there is at most one bit flip in the memory page.

This observation is consistent with our probability analysis in Section 3.4.1.2. Apart from

the targeted bit flips, we observed that some DDR4 DRAMs with large average bit flips in

a page give accidental bit flips in addition to the target offsets which reduces the rmatch.

Effect of Number of Attacker Rows on Bit flips The idea of a multi-sided Rowham-

mer attack is that instead of a single row above and below the victim row being read, another

victim is created above the attacker row, and another attacker above the new victim a vari-

able number of times. Figure 3.5 shows how the number of attacker rows changes the bit

flip rate.

Figure 3.6 shows that by reducing the number of aggressors in n-sided Rowhammer from

39



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

# of Aggressor Rows

0

500

1000
A

ve
ra

ge
 #

 o
f

 B
it 

F
lip

s

Figure 3.5: Average number of bit flips on an 8MB buffer vs the number of sides in an
n-sided Rowhammer attack.

15 to 7, we can reduce the number of additional flips to 4 bits per target page. Therefore,

we use 7-sided Rowhammer in the later experiments. Random bit flips outside the target

location have a very limited effect on both TA and ASR since the target model weights are

quantized [81].
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Figure 3.6: Average number of bit flips per page for 15-sided (blue) and 7-sided (red)
Rowhammer attack patterns.

As shown in Table 3.2, we get 99.9% rmatch for every DNNmodel we attack with CFT+BR

since all of the required bit flips we need are in separate pages. Whereas BadNet, FT, TBT,

and CFT, have very low numbers achieving as low as 1 bit flip since they require multiple-bit

flips with specific locations and flip directions in the same memory page.
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Figure 3.7: Total loss graph at every training iteration during the backdoor injection to the
ResNet18

3.5.4 CIFAR-10 Experiments

We experiment with our proposed method on ResNet18, ResNet20, and ResNet32 trained

on CIFAR-10 along with the baseline methods, such as BadNet, FT, and TBT. We also

compare our partial method, CFT, with our complete method (CFT+BR) which includes

the Bit Reduction. During the iterations of CFT+BR, we observed that the total loss spikes

after each Bit Reduction and quickly decreases again and eventually converges to a solution

θ + ∆θ as described in Equation 3.6. Figure 3.7 shows the loss progress after each epoch

with one batch of data while optimizing a constrained weight perturbation ∆θ to a ResNet18

model on the CIFAR-10 data set. After every 100 iterations, we apply Bit Reduction, which

causes spikes in the loss curve. We compare our method with baselines for both phases since

our attack scenario includes offline and online phases. Recall that in the offline phase, the

optimization takes place to find the vulnerable bit locations and generate a trigger pattern.

First, we evaluate the modified models with the corresponding trigger patterns. Then, for

each modified part of the weight parameters, we look for a matching target page location on

the profiled memory, which constitutes the online phase. If multiple bits need to be flipped in

the memory, we choose the one with the largest gradient value so that we get the maximum

possible performance from the baselines. Finally, DRAM Match Rate rmatch is calculated as

42



explained in Section 3.5.2. The experiment results are summarized in Table 3.2.

BadNet and FT have no control over the Nflip since they do not introduce any constraints

during the optimization. Therefore, in the offline phase, BadNet requires up to one and a half

million bit flips to inject a backdoor successfully. Although FT modifies only the last layer

while keeping the other layers constant, meaning fewer bit flips than BadNet, we observe that

up to 8,667 bits have to be flipped. TBT has control on the number of modified parameters

which enables partial control on the Nflip since the number of modified parameters limits the

maximum value Nflip can get. Therefore, we select the results that reproduce their claimed

performance in the original work [176] without modifying too many weight parameters and

increasing the Nflip too much, and thus, decreasing rmatch further. In the offline phase, TBT

finds a much smaller number of bits compared to BadNet and FT due to the limit on the

modified parameters. Our experiments show that the CFT+BR method successfully injects

a backdoor into ResNet20 model with 91.24% TA and 94.62% ASR by flipping only 10

bits out of 2.2 million bits in the DRAM. In ResNet32 and ResNet18, CFT+BR achieves

91.46% and 95.26% ASR, respectively, with a maximum of 1.66% degradation in the TA.

We observe that Nflip values in BadNet and FT depend heavily on mode size. As the total

number of bits increases, they require more bit-flips to achieve similar performance. On the

other hand, we do not observe a significant dependence on the model size in TBT, CFT,

and CFT+BR methods in terms of Nflip, TA, and ASR. In BadNet, FT, and TBT, the bit

flips are concentrated within the same pages. Especially FT and TBT targets on the last

layer of the DNN models. Since the last layer of the Resnet20, ResNet32, and ResNet18

models occupy only one memory page in DRAM, the bit-flip locations found in the offline

phase of FT and TBT reside within a single page. For instance, 210 bit-flips found by TBT

on ResNet32 are all on the same page. However, as we mention in Section 3.4.1.2, only

the pages with one targeted bit location can be found in DRAM in practice. Therefore, we

choose the bit flip with the largest gradient in a memory page and keep it modified and return

the other parameters to their original values. Finally, we evaluate their performance on the
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test data set. In the ResNet20 and ResNet32 models, we observe that the ASR of BadNet,

FT, and TBT drops down below 10% while the Test Accuracy values increase back to their

original values. We claim that the significant decrease in ASR values can be explained by

the diffusion effect of optimizing the parameters in an unconstrained way. When the attack

is implemented on DRAM using Rowhammer, rmatch values of BadNet, FT, and TBT are

lower than 3% for every DNN model. In CFT, rmatch is relatively higher than the other

baseline methods since it modifies only one parameter in a page. However, it does not put a

constraint on the number of bit flips within a byte during the optimization. Therefore, the

attack performance degrades drastically in practice. In all experiments, CFT+BR has 99.9%

rmatch since it already considers the bit locations that can be flipped during the attack. Since

the bit flips are sparse across different memory pages in CFT+BR, 100% of the bit flips can

actually be flipped. A small number of bits may be flipped in random locations, but it does

not affect the performance of the attack significantly. We show that lower rmatch values lead

to low ASR in backdoor injection attacks using Rowhammer.

3.5.5 ImageNet Experiments

We also compare our method with the baseline methods on models trained on the ImageNet

ILSVRC2012 Development Kit [184] data set, which consists of 1000 classes of visual objects.

We used pre-trained ResNet34 and ResNet50 from the model zoo [209] as the target models.

ResNet34 and ResNet50 include 172 million and 184 million bits, respectively. Note that both

the model and data set sizes are significantly larger compared to our CIFAR-10 experiments.

As the TA and ASR, we use top-1 accuracy results. The results are summarized in Table 3.2.

The same comparison methods we apply in CIFAR-10 are valid in ImageNet experiments as

well.

In the offline phase of the attacks, we observe that each method shows a different response

to the increase in the model and data set sizes. For instance, BadNet and FT require

more than 350K and 50K, respectively. Compared to CIFAR-10 models, BadNet is not
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affected significantly. However, Nflip for FT becomes 17 times larger on average on the

ImageNet models. TBT locates around 550 Nflip on the ResNet34 and ResNet50 models in

the offline phase, which is 5 times larger on average than the CIFAR-10 experiments. CFT

and CFT+BR locate around 1500 Nflip on the ResNet34 and ResNet50 models in the offline

phase, meaning 45 times and 22 times larger for CFT and CFT+BR, respectively.

In the online phase, we observe that none of the baseline methods has a significant attack

performance. For instance, in the BadNet method, although the model sizes increase 5̃.5

times, the number of modified pages increases only 1.5 times on average. Similarly, TBT

modifies only one page in the last layer of the ResNet34 and ResNet50 models, even though

the last layers of the models have more than 10 pages. This clearly shows that as the model

size increases, the density of bit flips required by the baseline models increases, meaning the

attack tends to focus on certain regions instead of uniformly distributing the bit flips. The

high density of the bit flips leads to rmatch rates as low as 0.02%. Although FT modifies

most of the pages in the last layer, the fact that the bit locations are not optimized at the

beginning causes vanishing ASR. Overall, we observe that the claimed ASRs can be achieved

only when rmatch is large enough. Although CFT achieves much larger rmatch values than the

other baseline methods, lacking Bit Reduction makes the attack focus on multiple bit flips

within 8-bit parameters, which, in return, causes lower than 5% ASR on the models trained

with ImageNet data set. In contrast, CFT+BR can inject the backdoor to ResNet models

with up to 96.2% ASR and a maximum of 7.2% degradation in the TA, which makes it the

best-performing backdoor injection attack compared to the baseline methods. These results

show that our approach generalizes well to larger data sets and models. Note that although

Nflip increases as the model gets larger in CFT+BR, it is still possible to flip these bits with

99.99% rmatch due to the sparse distribution.
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Figure 3.8: The change in GradCAM [190] heatmaps that belong to ResNet18 before the
attack (left) and after the attack (right). The focus of the model shifts through the trigger

pattern if it is backdoored.

3.5.6 Generalization to Other DNN Architectures

We experiment on other DNN architectures, such as VGG11, VGG16, to show that our

attack generalizes. We show that CFT+BR can successfully locate vulnerable bits and

achieves over 90% Attack Success Rate in VGG architectures. The results are summarized

in Table 3.3.

Table 3.3: CFT+BR experiment results on VGG architectures

Model Base Acc TA [%] ASR [%] Nflip

VGG11 92.35 92.70 100 30
VGG16 92.68 92.57 90.85 100

3.6 Potential Countermeasures

We analyze some of the prominent countermeasures proposed for mitigating bit-flip attacks

against DNN models.
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3.6.1 Prevention-Based Countermeasures

Binarization-Aware Training [79]1 is a method that uses Binarized Neural Networks

(BNNs) [83,178] to increase the resistance of DNNs against the bit flip attacks. This method

significantly reduces the network size. For instance, a binarized ResNet-32 model occupies

only 65 pages in the memory. Although 65 bit flips are not enough to inject a backdoor

using Rowhammer, Nflip cannot be larger than the number of pages occupied by the model.

Therefore, our experiments show that using BNNs is an effective defense against our attack

since it aggressively decreases the size of the network and, consequently, the maximum Nflip.

However, reducing the model size causes accuracy degradation as a performance overhead.

Note that BNNs may still be vulnerable to other fault attacks which do not require the same

physical constraints, such as sparse faulty bit locations.

Piecewise Weight Clustering (PWC) [79] is a relaxation of BNNs. With PWC,

an additional penalty term is introduced to the inference loss function, which forces model

weight distribution to form two clusters. We experiment with our attack against a ResNet32

model trained with PWC penalty term in the loss function. We observe a strengthened

trade-off between the TA and ASR during the optimization.For instance, the ASR drops

down to 43.42% when TA is 89.66% with 112 Nflips. On the other hand, our attack achieves

98.49% ASR while degrading the TA down to 9.9% with the same Nflips. The results show

that training the model with PWC does not protect against accuracy degradation and even

targeted misclassification attacks. However, it makes it harder to inject stealthy backdoors.

3.6.2 Detection-Based Countermeasures

Possible defense techniques focusing on detecting the attacks on the model weights [40,115,

118,124] come with an overhead because they need to be deployed together with the model

into the machine learning product.

1Binarization-Aware Training and Piecewise Weight Clustering implementations are taken from https:

//github.com/elliothe/BFA.
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DeepDyve [118] is a dynamic verification method that uses a checker model along

with the original model for mitigating the transient faults in the inference. It assumes both

models predict the same results for the same inputs most of the time. When the results of

the two models are the same, the result is accepted immediately. However, if the results

are different, the inference is repeated, and the second result from the original model is

accepted. DeepDyve assumes the fault in the model is transient and does not appear in

consecutive queries. However, the bit flips introduced by Rowhammer stay in the memory

until being reloaded from the disk. Since the transient assumption does not hold, even if a

checker model raises an alarm and repeats the inference, the new inference is made by the

backdoor-injected model and will not be detected.

Weight Encoding [124] proposes additional matrix multiplication and weight extrac-

tion. Thus, this method can detect only the topmost sensitive layers in the network to keep

the overhead low. However, our attack can target all layers to inject a backdoor. Therefore,

the spatial locality assumption does not hold with our attack. Using the overhead numbers

in [124] for ResNet-34, we estimate the time and storage overhead against our attack. Since

the time complexity of weight encoding dj = r(yj), yj = ϕ(
∑N−1

i=0 Bi ·Kij) is O(N2), where

B is ZN , and K is RNxM , the estimated execution time overhead of the method is 834.27

seconds. Since the storage complexity of the Weight Encoding is linear, the storage cost

for ResNet34 is estimated as (0.141/8192)× 21779648 = 374.86MB, which is 446% storage

overhead, showing that the proposed method is not scalable.

RADAR [115] is a checksum-based detection method during inference. It divides the

weights into groups and gets the checksum of the most significant bits of parameters in each

group. The original checksum values of the parameters are stored along with the model

and are validated with the original signatures at every inference time. The optimization

constraints can be further increased to avoid flipping the MSB of the weight parameters in

our attack, which can bypass the detection. Assuming linear time complexity, time overhead

goes up to 40.11% for full-size bit protection in ResNet20.
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SentiNet [40] filters the adversarial inputs using GradCAM heatmaps [190]. We use

the GradCAM implementation from [64] to analyze the output of four sample images that

are labeled as car, frog, cat and car respectively (See Figure 3.8.). Before the attack, the

model correctly classifies all images with or without the trigger pattern. If the trigger pattern

does not overlap with the major features in the image, e.g. frog and cat, the main focus

of the model stays on the object. However, if the trigger pattern overlaps with the main

features, e.g. the wheel of the car, the focus is shifted towards the trigger pattern. After the

attack, regardless of the trigger and object overlap, the focus of the model shifts towards the

trigger pattern, and the model misclassifies all images to the target class, bird. Therefore,

although a GradCAM-based approach can possibly filter the adversarial inputs, it will also

produce false positives even if the model is clean and works correctly.

3.6.3 Recovery-based Countermeasures

Weight Reconstruction: Li et al. [116] propose Weight Reconstruction2 to recover the

clean network after a bit flip attack occurs. Weight Reconstruction aims to recover from an

accuracy degradation caused by the attack. After a bit flip occurs in a weight parameter, the

effect of the change is distributed onto other parameters to reduce the overall effect on the

model performance. We experiment with our CFT+BR attack against a ResNet32 defended

by Weight Reconstruction to evaluate the effectiveness of the proposed defense method. We

applied our attack in two different scenarios. In the first scenario, the attacker is not aware

that the model is defended by Weight Reconstruction and applies the offline phase of the

attack as described in Section 3.4.1.3. As a baseline, our attack achieves 91.46% ASR and

97.77% TA by flipping 95 bits in the memory. After applying Weight Reconstruction, we ob-

served that ASR and TA become 32.89% and 91.02, respectively. In the second scenario, the

attacker is aware that the model is defended by Weight Reconstruction and applies the offline

phase of the attack against a model with Weight Reconstruction. However, if the attacker

2Weight Reconstruction implementation is taken from https://github.com/zlijingtao/DAC20_

reconstruction.
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is aware of the defense and applies CFT+BR on a defended model, our attack successfully

bypasses Weight Reconstruction by achieving 94.04% ASR and 89.51% TA. Therefore, the

Weight Reconstruction approach does not protect the models when the attacker knows the

applied defense.

3.7 Related Works

Rowhammer Attacks on DNNs We compare our work with Terminal Brain Dam-

age [81] and Deephammer [240] in terms of the following factors:

Attacker’s Objectives: The main difference between our work and previous works is the

goal of the attack. In both [81] and [240], the attacker’s objective is to degrade the inference

accuracy of the model on legitimate inputs and cause a denial of service. In contrast, our

attack objective in this work is to keep the inference accuracy for legitimate inputs the

same and misclassify all trigger-added inputs to a target class in stealth by using a unified

objective function given in Equation 3.3.

Assumptions: All [81], [240], and our work assume the attack takes place in a cloud

environment where the model is loaded into system’s shared memory and stays unchanged.

Unlike [240], we do not assume the availability of huge page configuration to bypass virtual

to physical translation.

Attacker Capabilities: Same as our attack, [240] and [81] assume the attacker knows the

model architecture and parameters. [81] also considers black-box setting with random bit

flips. Since our attack objective is more sophisticated, our attack is not applicable in a

black-box setting.

Attack Time: [240] configures the hammering time for each row as 190ms. Since [81]

only simulates the attack, they assume it is 200ms in the calculations. In our setup, it

takes 800ms to hammer one row using a 15-sided pattern during the profiling phase and

400ms using a 7-sided pattern during the online phase. Note that previous works consider
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only double-sided Rowhammer, which takes less time but is not effective on DDR4 chips

with TRR mitigation. Total online attack time varies between different models and can be

estimated by multiplying the hammering time by Nflip.

Stealthiness/Detectability: Due to the difference in the attack objectives, the stealth of

the attacks is also different. For instance, Test Accuracy after the attack on VGG16 is given

as around 10% in both [81] and DeepHammer. However, we can preserve the Test Accuracy

at over 92% after our attack while being able to misclassify over 90% of all instances with

an attacker-generated trigger pattern. Since we can preserve the Test Accuracy close to the

base accuracy of the models, our attack is stealthy.

Comparison of Accuracy Degradation: Although the goal of backdoor injection is not

accuracy degradation, the resulting degradation on trigger-added inputs is comparable to [81]

and [240]. In VGG16 trained on CIFAR10, when we add trigger pattern to all images, we see

the accuracy of the model to be 18% (an 80% relative accuracy degradation from baseline).

Alternatively, [240] and [81] claim relative accuracy degradations of VGG16 to be 88% and

90%, respectively (after the attack the models only produce a correct output 10% of the

time).

Accuracy Degradation Attacks Bit-Flip Attack [175] degrades the accuracy of DNN

models to random guess using a chain of bit flips. Targeted Bit-Flip Attack [177] is shown to

be capable of misclassifying the samples from single or multiple classes to a target class on

quantized DNN models. Although these works show that DNN model performance can be

damaged permanently by flipping a limited number of bits in the weight parameters, these

attacks do not make use of an attacker-controlled backdoor trigger. Therefore, they have

very limited control over stealthiness. A binary integer programming-based approach was

proposed by Bai et al. [16] to find the minimum number of bit flips required to make the

model misclassify a single image sample into a targeted class.
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ML Backdoor Attacks Garg et al. [60] observed that adversarial perturbations on the

weight space of the trained models could potentially inject Backdoor, but it requires either

social engineering or full privileged access to replace the target model with the backdoored

model. [176] and [37] showed that backdoor attacks could be implemented by changing only

a small number of weight parameters. However, both of the works assume any bit location

in the memory can be flipped, which is not practical. Therefore, the practicality of software-

based backdoor injection attacks during the inference phase is still an open question due to

the practical constraints that have been overlooked in previous works.

3.8 Discussion

Alternative Methods for Identifying Target Bits: The CFT+BR algorithm presented

in this work leverages domain-specific knowledge about Rowhammer and DNN behavior

under perturbations. While traditional optimization methods such as Bayesian Optimization

(BO) could theoretically be adapted for this purpose, they present significant challenges.

Specifically, BO struggles with high-dimensional search spaces, such as the millions of bits in

memory, and requires surrogate models that scale poorly with dimensionality. Moreover, BO

is not inherently designed for discrete and heavily constrained problems, which are critical

in this context. Although BO’s sample efficiency and ability to handle expensive evaluations

may be advantageous in smaller sub-problems, it would require extensive customization to

address the constraints of this attack scenario.

Effect of Huge Pages: We assume huge pages are not available since they give an

advantage for finding contiguous memory in physical address space. Even though the target

model uses huge pages, the memory controller would still fragment the huge page into 8 KB

rows in DRAM due to the fixed row size. Also, each chunk is mapped into different banks in

order to increase parallel access. For example, if there are 64 banks in the system, a 2 MB

huge page would be fragmented into 64 chunks and 4 neighbor rows in the DRAM.Although
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this may hurt the n-sided Rowhammer pattern, it would still be possible to sandwich each

chunk and do Rowhammer. Note that, in memory systems with multiple DIMMs, and ranks,

the number of banks also increases, which would decrease the size of the chunks down to a

single row. In that case, a regular double-sided or n-sided Rowhammer attack would still

work. Since an attacker can choose to profile 4 KB pages in DRAM, finding 512-bit flips in

2 MB would still be practical.

Application on Other Security Critical Tasks: The proposed attack method is a

generic approach and agnostic to the downstream tasks. Therefore, it would work on models

used in other safety-critical tasks, such as voice recognition applications.

3.9 Dynamic Analysis Approach on the Detection of

Fault Targets

While numerous studies have extended Rowhammer’s applicability to areas like cloud envi-

ronments and network-based attacks, recent advancements include targeting sensitive CPU

stack variables to execute malicious code and bypass security measures. In this section, we

investigate the automatic detection of LeapFrog gadgets that enable Rowhammer to break

security assumptions in cryptographic libraries and machine learning models. LeapFrog gad-

gets allow the manipulation of the program counter (PC) stored in the stack to subvert

control flow, bypassing critical security features like authentication and encryption.

Based on how the LeapFrog gadgets occur in the binary, we developed a custom tool we

call MFS (Multidimensional Fault Simulator) that relies on dynamic binary instrumentation

and analysis. Since the attack happens on program counters and registers, which are invisible

to high-level code, such as C/C++, it is not possible to do a static analysis of the source

code. We put together a set of rules that enables us to collect, filter, and pinpoint the

potential LeapFrog gadgets. The overall design is shown in Figure 3.9.

1 First, MFS collects the instruction traces, specifically, the address of instructions
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push  %r12
push  %rbp
xor   %ecx,%ecx
...

Correct trace

incorrect trace

diff
addr, inst

 +                     
 +                     
 -                     
 -                     

Hamming Distances

addr1, addr2, HD=1

Incorrect trace

addr0: call inst
            jmp addr2  
addr1: ...
addr2: ..

Simulation Results

addr1src -> addr1dest
Result: ...
addr2src -> addr2dest
Result: ...

Filtered Results

addrsrc -> addrdest

SIGSTOP

timeout

not
in memory

SIGCONT

in memory

Check
/proc/$pid/mem

addr0: call inst
addr1: ...
addr2: ..

addr0: call inst
addr1: ...
addr2: ..

Figure 3.9: LeapFrog gadget detection using MFS framework

executed, for different inputs. For the purpose of detecting the gadgets that cause security

exploits, MFS chooses critical input pairs that cause differences in the program’s control

flow. Such inputs can be correct/incorrect private key pairs or passphrases for authentication

programs. Together with the instruction addresses, we collect the execution time of each

function executed. Since the return addresses of the functions with larger execution times

will stay in the memory for a longer duration, they are potentially more viable targets.

2 MFS then computes the difference between two instruction traces to find the in-

struction addresses that are executed with correct input(s) but not executed with incorrect

input(s). Note that this is an optional step to reduce the complexity of the following steps,

and it comes with a cost of false negatives. Moreover, depending on the program and type

of exploit, it may not always be possible to get multiple different traces; see §3.9.2.2. Alter-

natively, the whole instruction trace can be considered instead of only the difference.

3 MFS then looks for address pairs that hold the following conditions:

dH(addr
i
exec, addr

j
return) = 1 (3.7)

where addriexec is the address of the i
th instruction that is executed, addrjreturn is the return

addresses of the jth call instruction, and dH is the Hamming distance between two addresses.

i and j are bounded by the number of all instructions executed (n) and the number of call

instructions executed (m), respectively. Although this operation has O(mn) complexity, it
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can be implemented with bitwise xor and can be parallelized using multiple processor cores.

The condition given in Equation equation 3.7 is determined by the Rowhammer fault model.

Since multiple-bit flips on a precise target are much rarer and harder to control, MFS assumes

we can only flip a single bit. Yet, the method is generic enough to cover other potential fault

models, such as optical fault injection, where multiple-bit flips are more likely [25]. This

step generates a list of pairs of addresses in the following format: {< addrksrc, addr
k
dest >}

where addrksrc is the k
th instruction address that MFS targets in the binary’s execution with

the input that we want to affect the control flow of, such as an incorrect private key, and

addrkdest is the corrupted instruction address after fault injection.

4 For each address pair we get from the list generated in the previous step, MFS starts

a simulation session. MFS executes the binary again with the incorrect input and simulate

a bit flip on the instruction address addrsrc to make it addrdest. It is possible that certain

instructions are executed multiple times in a single execution. To correctly cover that case

in our fault model, we keep a counter variable for a specific instruction that increments every

time the binary executes the same instruction. In a single execution of the original binary,

if an instruction is executed N times, we attempt the fault simulation N +1 times, until we

no longer see the same instruction in the trace.

5 After the bit flip simulation, MFS continues the execution of the binary without

further faults and observe the new behavior. The analysis of the new behavior is not a

trivial task. There are several options where we can observe changes compared to the original

execution. For instance, we can observe changes in the total number of executed instructions,

the number of instructions that match with the correct input execution trace, the return

code of the program, outputs to standard streams, ports that are accessed, functions calls,

authentication result, etc. The choice of observable depends on the program under test.

In this work, MFS uses the return codes, standard outputs/errors, and authentications on

different case studies.
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3.9.1 Tool Implementation

We used Intel’s dynamic binary instrumentation framework, Pin, which allow for process

analysis without altering its core behavior [128] to implement 1 and 4 of MFS. Using

Pin also makes it possible to find LeapFrog gadgets in binaries that do not have a source

code since it does not require recompiling. In the context of MFS, Pin’s capabilities are

harnessed to monitor the execution trace of a binary. This integration allows for a thorough

analysis of potential LeapFrog gadgets by observing how changes in PC values influence

program behavior. For each executed instruction, our tool outputs the virtual address of the

instruction and disassembly of the machine code. If the instruction is a call instruction it

also outputs the return address of the call, which is usually the PC value that is pushed onto

the stack before executing the called routine. For every write to STDOUT and STDERR,

the tool forwards a copy of the buffer to a text file for further analysis. To avoid the effect

of overhead caused by instruction-based instrumentation, function timings are collected in a

separate session on every function entry and exit.

2 is a simple comparison operation on the correct and incorrect execution traces imple-

mented with diff command line tool in Linux.

3 is implemented in Python. MFS parses the instruction traces and computes the Ham-

ming distance between the return addresses and instruction addresses of all executed instruc-

tions in the correct trace or the list of addresses we get from 2 . The Hamming distances

are calculated using the native bit count function in Python followed by bitwise xor in

numpy library. The operation is parallelized on multiple cores to speed up the analysis.

The bit flip simulation part of MFS ( 4 ) is done using Pin which takes the address pairs

and simulates every fault independently. The faults on PC values are implemented as direct

jumps to the corrupted addresses by adding jmp addrdest after function returns. Since we

add a direct jump to the target address by injecting a line of assembly with the the Pin tool,

it is functionally equivalent to corrupting the PC value in memory.

5 filters the simulation results depending on the program and targeted exploit type. For
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different types of exploits, we can filter by return code or value in STDOUT.

3.9.2 Experiments

Experiment Setup The experiments are conducted on a system with Ubuntu 22.04.2

LTS with 6.2.0-37-generic Linux kernel installed. The system uses an Intel Core i9-9900K

CPU with a Coffee Lake microarchitecture. We used a dynamic clock frequency rather

than a static clock frequency to improve the practicality of the attack. End-to-end attack

experiments are done on a single DIMM Corsair DDR4 DRAM chip with part number

CMU64GX4M4C3200C16 and 16GB capacity. DRAM row refresh period is kept at 64ms,

which is the default value in most systems. In all the experiments, we used 100s simulation

timeout, since the fault simulations rarely cause infinite loops. We empirically observe that

using the Python signals library, the target process could complete 34M cycles before the

attacker can stop it, with a standard deviation of 2.7M cycles. Alternatively using a bash

script, the victim process can only complete 18M cycles before it is stopped, with a standard

deviation of 0.3M cycles. There is an order of magnitude difference in precision stopping a

process with bash vs with Python.

3.9.2.1 ML Misclassification

In this section, we investigate the potential implications of instruction skipping in the ma-

chine learning domain, specifically for decision tree algorithms. A decision tree is an ML

model used to make predictions based on a series of binary choices, effectively splitting data

into increasingly specific groups. It starts with a single node, which branches into possible

outcomes based on the features of the data. Each branch represents a decision pathway, and

each node in the pathway represents a test on a specific attribute. This process continues

until a leaf node is reached, which provides the predicted outcome. They are widely used

in various applications, from financial forecasting [123] to medical diagnosis [192] due to

their interpretability, and efficiency for a variety of tasks such as classification, and feature
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importance ranking. We choose a decision tree for proof of concept yet instruction skipping

attacks can be effective in every kind of model implementation.

Classification algorithms may be vulnerable to the LeapFrog attack under the threat

model that an attacker is co-located on the server with the victim process running the

model, and the attacker would like to force a particular output. If the attacker faults

the victim process program counter and forces a jump in the code, the result may be a

misclassification or a forced classification of a particular output. This attack is different

from other Rowhammer attacks on machine learning models [207] because for this attack we

do not need to know the model weights before hand, and we consider this a gray box model.

In this experiment, we use a public implementation [157] as our target. We simulate

program counter flips and observe the effects on the model output. We follow a similar

procedure to previous examples, where we experiment with a hammering distance of 1, 2,

and 3 and determine the number of successful LeapFrog gadgets with each of these distances.

In Table 3.4, we can see various number of LeapFrog candidate gadgets that might result in

a misclassification. After simulating these gadgets, we found 23 of the 1363 potential gadgets

within 1 hammer distance would result in a misclassification.

Table 3.4: Number of gadget candidates found in decision tree algorithm with different
Hamming distances.

Target Size #Inst.exec dHD # Candidates
2 on 2 off

Decision Tree 99KB 38417
1 N/A 1363
2 N/A 8667
3 N/A 32326

3.9.2.2 Crypto Libraries

OpenSSL Encryption Bypass We analyze openssl command line tool that uses OpenSSL

v1.1.1w for block cipher and stream cipher implementations. For each cipher, we give a sim-

ple plaintext that contains the helloworld string and run encryption without salt with a
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Table 3.5: Number of gadget candidates found by MFS on OpenSSL for fault models with
different hamming distances. We ran OpenSSL with aria-128-cbc cipher.

Target Size #Inst.exec dHD # Candidates
2 on 2 off

OpenSSL 818KB 49431
1 N/A 2700
2 N/A 20208
3 N/A 70475

simple passphrase. Our aim is to find LeapFrog gadgets in the binary that can be exploited

for bypassing encryption steps in the ciphers, revealing the plaintext.

First, we scan the binary using MFS as described in §3.9. Since we do not aim for any

authentication bypass in this scenario, and the execution traces are deterministic for fixed

inputs, step 2 is not applicable. Instead, in step 3 , we compare the return addresses in a

single trace against all the instruction addresses in the same trace to look for targets with

dHD = 1. The results for aria-128-cbc summarized in Table 3.5.

We scanned the binary with 135 different ciphers available in OpenSSL. Most of the time

the binary was not affected by the simulated bit flip and correctly produced the ciphertext.

Fig. 3.12 illustrates one of the LeapFrog gadgets found in the openssl command line tool.

When we corrupt a single bit in 0x55555559c4c5, the return address of opt cipher function,

to make it 0x55555559c0d5, the function returns to the corrupted return address, skipping

three instructions in between. Similarly, another single-bit corruption to (0x55555559c0c5)

causes the function to return to an earlier point in the program. We verified that both of

these bit flips cause the binary to skip the whole encryption and instead output the plaintext.

Similarly, MFS detected LeapFrog gadgets that are used in 36 ciphers including block ciphers

and stream ciphers. The ciphers with LeapFrog gadgets that revealed full or partial plaintext

are listed in Table 3.6. Fig. 3.10 and 3.11 summarize the simulation results for aes-256-ctr

and aria-256-ctr respectively.

Even with ASLR enabled, these gadgets are reproducible because ASLR does not ran-

domize the last 12 bits of the code space (the page offset). We only simulated faults in the
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Figure 3.10: aes-256-ctr simulation results
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Figure 3.11: aria-256-ctr simulation results. Plaintext helloworld is revealed three
times.

last 12 bits (which should be the same across all x86 machines the process is compiled for),

thus, the LeapFrog gadgets should work across machines without the need for rescanning.

Post-Quantum Cryptography Schemes We use Open Quantum Safe (liboqs version

0.11.1-dev) library [194], an open source library for PQC algorithms, to find LeapFrog gad-

gets on FIPS standards using MFS tool.

One of the algorithms selected by NIST for standardization is CRYSTALS-Dilithium,

which serves as a digital signature scheme providing post-quantum security guarantees.

Dilithium relies on the hardness of structured lattice problems, such as the Learning With

Errors (LWE) problem, which is believed to be intractable for quantum computers. Another

prominent algorithm is FALCON, which offers smaller key sizes and signatures by employing
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Table 3.6: 36 ciphers implemented in OpenSSL that are vulnerable to LeapFrog attack.
Each given cipher reveals the plaintext fully or partially in the ciphertext due to skipped

encryption steps.

Recovered Cipher

helloworld aria-128-cbc, aria-128-cfb,aria-128-cfb1
aria-128-cfb8, aria-128-ctr, aria-128-ofb

aria192, aria-192-cbc, aria-192-cfb
aria-192-cfb1, aria-192-cfb8, aria-192-ctr

aria-192-ofb, aria256, aria-256-cbc
aria-256-cfb, aria-256-cfb1, aria-256-cfb8

aria-256-ctr, aria-256-ofb, bf-ofb
rc2-ofb, rc4, rc4-40

hellowor... bf-cfb, rc2-cfb

hdlmowor... idea-cfb, idea-ofb

oworhell... bf, bf-cbc, bf-ecb, blowfish

?rl#a?gy?... chacha20, des-ede3-ofb, des-ede-ofb, des-ofb

<enc_main>:
...
   0x55555559c0c0:  call   <opt_next>
   0x55555559c0c5:  test   %eax,%eax                  
   0x55555559c0c7:  je     <enc_main+0x1a0>
   0x55555559c0c9:  cmp    $0x1d,%eax
   0x55555559c0cc:  jg     <enc_main+0x178>
...
   0x55555559c4b0:  call   <opt_unknown>
   0x55555559c4b5:  lea    0x90(%rsp),%rsi
   0x55555559c4bd:  mov    %rax,%rdi
   0x55555559c4c0:  call   <opt_cipher>               
   0x55555559c4c5:  test   %eax,%eax                  
   0x55555559c4c7:  je     483a8 <enc_main+0x438>
   0x55555559c4cd:  mov    0x90(%rsp),%rbp
   0x55555559c4d5:  jmp    <enc_main+0x150>           
   0x55555559c4da:  nopw   0x0(%rax,%rax,1)
   0x55555559c4e0:  mov    0x84(%rsp),%r9d
...

Figure 3.12: LeapFrog gadget in OpenSSL command line tool resulting in encryption
bypass in aria-128-cbc block cipher. The PC value that fault is injected into, addrsrc, is
highlighted in blue. The new value after the fault injected,addrdest, is highlighted in red.

The fault is injected during the execution of the function call highlighted in green.
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the NTRU lattice, making it a competitive choice for constrained environments. Our anal-

ysis of these algorithms reveals that, despite their robust design against quantum attacks,

they still exhibit vulnerabilities at the implementation level, susceptible to hardware fault

injections like the LeapFrog used in Rowhammer-based exploits.

In digital signature schemes, we find gadgets that produce several failure modes in the

Open Quantum Safe Library. The most critical error is a bypass of the signature verification.

Note, that while we experimented with Post-Quantum encryption schemes, theoretically

LeapFrog gadgets should work on classical encryption schemes as well.

The “Magic Number Mismatch” column in Table 3.7 highlights instances where the in-

jected fault corrupts memory regions containing predefined magic numbers used for integrity

checks. This mismatch signifies unintended memory corruption caused by the LeapFrog gad-

get, which can lead to unpredictable behavior or system crashes. According to Table 3.7,

all signature schemes also contain gadgets for this failure mode, with Dilithium 3 containing

the most number of LeapFrog gadgets.

Failures during key generation (“Key Gen. Fail”), signature generation (“Sig. Gen.

Fail”), and signature verification (“Sig. Verif. Fail”) were also identified. Such failures

can be exploited to disrupt normal cryptographic operations, resulting in denial-of-service

(DoS) attacks or weakening cryptographic strength by producing invalid or insecure keys

and signatures. All schemes contain this type of gadget.

The “Incorrect Verification” column denotes scenarios where invalid signatures are er-

roneously accepted as valid. This occurs when a LeapFrog gadget alters the control flow

of the verification routine, enabling attackers to perform impersonation attacks by forging

signatures that bypass standard validation checks.

Lastly, the “Verification Bypass” column in Table 3.7 highlights instances where the sig-

nature verification routine can be entirely circumvented using LeapFrog gadgets.This allows

an attacker to craft an invalid signature and have it accepted as valid at the client’s end.

By flipping bits in the Program Counter (PC) values using the LeapFrog within the client’s
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memory space, the attacker effectively bypasses the signature verification routine. This vul-

nerability poses a significant security risk by enabling impersonation attacks and facilitating

unauthorized access or actions within the system. Notably, Dilithium3 exhibits the high-

est number of LeapFrog gadgets for this threat, indicating a greater susceptibility to such

attacks. An example of such a LeapFrog gadget in Dilithium is seen in Figure 3.13.
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<OQS_randombytes_system>:
...
   0x5555555586e1:  mov    %r12,%rdi
   0x5555555586e4:  mov    %rax,%rbp
   0x5555555586e7   callq  <fread@plt>           
   0x5555555586ec:  cmp    %rax,%rbx             
   0x5555555586ef:  ja   <OQS_randombytes_system>

...

Figure 3.13: LeapFrog gadget detected in liboqs binary for Dilithium PQC Digital
Signature Scheme. The PC value that fault is injected into, addrsrc, is highlighted in blue.
The new value after the fault injected, addrdest, is highlighted in red. The fault is injected

during the execution of the function call highlighted in green.

We find LeapFrog gadgets on FIPS 204 standard, also on other PQC digital signatures

schemes, FALCON [58], MAYO [21], and CROSS [17].

Table 3.7 summarizes LeapFrog gadgets found in the liboqs library for different PQC

digital signature schemes. Compared to Dilithium, ML-DSA, the implementation of the FIPS

204 standard, had fewer LeapFrog gadgets, suggesting that its implementation might be more

resilient to the specific fault attacks we conducted. However, this does not imply immunity,

as the gadgets found were still capable of bypassing critical functions. The relatively lower

number of vulnerabilities in ML-DSA could also be attributed to its simpler structure, which

reduces the surface area for potential control flow subversion attacks.

We also evaluated SPHINCS+, a hash-based signature scheme standardized in FIPS 205.

SPHINCS+ offers a different security foundation, relying on the hardness of hash-based

constructions rather than lattice problems. While this scheme is robust against certain

classes of attacks, our analysis uncovered several LeapFrog gadgets capable of bypassing

signature verification. This suggests that even though the algorithm itself is designed to

withstand quantum and classical cryptanalytic attacks, practical vulnerabilities arise due

to implementation flaws that allow Rowhammer-based attacks to alter execution paths.

Interestingly, the number of LeapFrog gadgets identified in SPHINCS+ varied significantly

based on its parameter set, with some configurations being more resilient than others. This

highlights the importance of parameter selection in mitigating the risk of physical attacks.
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SPHINCS+ has more gadgets compared to the FALCON-1024 configuration, but in some

configurations, it has fewer gadgets than FALCON-512, another selected algorithm that is not

standardized. Overall, our findings indicate that there are generally more LeapFrog gadgets

that enable bypassing signature verification compared to those that can falsely verify an

invalid signature, indicating higher feasibility for DoS attacks with lower security impact

compared to impersonation attacks.

3.10 Conclusion

We analyzed the viability of a real-world DNN backdoor injection attack. Our backdoor

attack scenario applies to deployed models by flipping a few bits in memory assisted by the

Rowhammer. Our initial analysis performed on hardware showed that earlier proposals fall

short in assuming a realistic fault injection model. We devised a new backdoor injection

attack method that adopts a combination of trigger pattern generation and sparse and uni-

form weight optimization. In contrast to earlier proposals, our technique uses all layers and

combines trigger pattern generation, target neuron selection, and fine-tuning model param-

eter weights in the same training loop. Since our approach targets the weight parameters

uniformly, it is guaranteed that no more than one bit in a memory page is flipped. Further,

we introduced new metrics to capture a realistic fault injection model. This new approach

achieves a viable solution to target real-life deployments: on CIFAR10 (ResNet 18, 20, 32

models) and ImageNet (Resnet34 and 50 models) on real hardware by running the Rowham-

mer attack achieving Test Accuracy and Attack Success Rates as high as 92.95% and 95.26%,

respectively. We also showed that our attack works on other architectures, such as VGG11

and VGG16. Finally, we evaluated the prominent defense techniques against our backdoor

injection attack. We concluded that the proposed countermeasures are either not effective

or introduce significant overhead in terms of time and storage.
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Chapter 4

Scalable Generation and Detection of

Spectre Gadgets

4.1 Motivation

The new era of microarchitectural attacks began with newly discovered Spectre [105] and

Meltdown [119] attacks, which may be exploited to exfiltrate confidential information through

microarchitectural channels during speculative and out-of-order executions. The Spectre at-

tacks target vulnerable code patterns called gadgets, which leak information during specu-

latively executed instructions. While the initial variants of Spectre [105] exploit conditional

and indirect branches, Koruyeh et al. [107] propose another Spectre variant by poisoning

the entries in Return-Stack-Buffers (RSBs). Moreover, new Spectre-type attacks [36, 107]

are implemented against the SGX environment and even remotely over the network [189].

These attacks show the applicability of Spectre attacks in the wild.

Unfortunately, chip vendors try to patch the leakages one-by-one with microcode updates

rather than fixing the flaws by changing their hardware designs. Therefore, developers rely

on automated malware analysis tools to eliminate mistakenly placed Spectre gadgets in

their programs. The proposed detection tools mostly implement taint analysis [224] and
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symbolic execution [72, 222] to identify potential gadgets in benign applications. However,

the methods proposed so far are associated with two shortcomings: (1) the low number of

Spectre gadgets prevents the comprehensive evaluation of the tools, (2) time consumption

exponentially increases when the binary files become larger. Thus, there is a need for a

robust and fast analysis tool that can automatically discover potential Spectre gadgets in

large-scale commercial software.

Natural Language Processing (NLP) techniques are applied to automate challenging nat-

ural language and text processing tasks [172]. Later, NLP techniques have been used in

the security domain, such as network traffic [173] and vulnerability analysis [180]. Such ap-

plications leverage word [140] or paragraph [113] embedding techniques to learn the vector

representations of the text. The success of these techniques heavily depends on the large

data sets, which ease training scalable and robust NLP models. However, for Spectre, for

instance, the number of available gadgets is only 15, making it crucial to create new Spectre

gadgets before building an NLP-based detection tool.

Generative Adversarial Networks (GANs) [65] are a type of generative models, which aim

to produce new examples by learning the distribution of training instances in an adversarial

setting. Since adversarial learning makes GANs more robust and applicable in real-world

scenarios, GANs have become quite popular in recent years with applications ranging from

generating images [156, 228] to text-to-image translation [181], etc. While the early appli-

cations of GANs focused on computer vision, implementing the same techniques in NLP

tasks poses a challenge due to the lack of continuous space in the text. Various mathe-

matical GAN-based techniques have been proposed to achieve better success in generating

human-like sentences to overcome this obstacle [56, 74]. However, it is still unclear whether

GANs can be implemented in the context of computer security to create application-specific

code snippets. Additionally, each computer language has a different structure, semantics,

and other features that make it more difficult to generate meaningful snippets for a specific

application.
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Neural vector embeddings [113, 140] used to obtain the vector representations of words

have proven extremely useful in NLP applications. Such embedding techniques also enable

one to perform vector operations in high dimensional space while preserving the meaningful

relations between similar words. Typically, supervised techniques apply word embedding

tools as an initial step to obtain the vector embedding of each token and then build a su-

pervised model on top. For instance, BERT [51] was proposed by the Google AI team,

which learns the relations between different words in a sentence by applying a self-attention

mechanism [220]. BERT has exhibited superior performance compared to previous tech-

niques [139, 196] when combined with bi-directional learning. Furthermore, the attention

mechanism improves GPU utilization while learning long sequences more efficiently. Re-

cently, BERT-like architectures are shown to be capable of modeling high-level program-

ming languages [57, 111]. However, it is still unclear whether it will be effective to model

a low-level programming language, such as Assembly language, and help build more robust

malware detection tools, which is the goal of this work.

Our Contributions Our contributions are twofold. First, we increase the diversity of

Spectre gadgets with the mutational fuzzing technique. We start with 15 examples [104]

and produce 1 million gadgets by introducing various instructions and operands to the ex-

isting gadgets. Then, we propose a GAN-based tool, namely, SpectreGAN, which learns the

distribution of 1 million Spectre gadgets to generate new gadgets with high accuracy. The

generated gadgets are evaluated from both semantic and microarchitectural aspects to verify

their diversity and quality. Furthermore, we introduce novel gadgets that are not detected

by state-of-the-art detection tools.

In the second part, we introduce FastSpec, a high dimensional neural embedding based

detection technique derived from BERT, to obtain a highly accurate and fast classifier for

Spectre gadgets. We train FastSpec with generated gadgets and achieve a 0.998 Area Under

the Curve (AUC) score for OpenSSL libraries in the test phase. Further, we apply FastSpec

on Phoronix benchmark tests to show that FastSpec outperforms taint analysis-based and
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symbolic execution-based detection tools as well as significantly decreases the analysis time.

In summary,

• We extend 15 base Spectre examples to 1 million gadgets by applying a mutational fuzzing

technique,

• We propose SpectreGAN which leverages conditional GANs to create new Spectre gadgets

by learning the distribution of existing Spectre gadgets in a scalable way,

• We show that both mutational fuzzing and SpectreGAN create diverse and novel gadgets

which are not detected by oo7 and Spectector tools,

• We introduce FastSpec, which is based on supervised neural word embeddings to identify

the potential gadgets in benign applications orders of magnitude faster than rule-based

methods.

4.2 Related Works

4.2.1 Spectre attacks and detectors

Spectre Variations and Covert Channels In the first Spectre study [105], two variants

were introduced. While Spectre-V1 exploits the conditional branch prediction mechanism

when a bound check is present, Spectre-V2 manipulates the indirect branch predictions to

leak the secret. Next, researchers discovered new variants of Spectre-based attacks. For in-

stance, a variant of Spectre focuses on poisoning Return-Stack-Buffer (RSB) entries with the

desired malicious return addresses [107, 131]. Another variant of Spectre called Speculative

Store Bypass [82] takes advantage of the memory disambiguator’s prediction to create leak-

age. Traditionally, secrets are leaked through cache timing differences. Then, researchers

showed that there are also other covert channels to measure the time difference: namely

using network latency [189], port contention [22], or control flow hijack attack based on

return-oriented programming [133] to leak secret data.
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Defenses against Spectre There are various detection methods for speculative exe-

cution attacks. Taint analysis is used in oo7 [224] software tool to detect leakages. As an

alternative way, the taint analysis is implemented in the hardware context to stop the spec-

ulative execution for secret dependent data [188,245]. The second method relies on symbolic

execution analysis. Spectector [72] symbolically executes the programs where the conditional

branches are treated as mispredicted. Furthermore, SpecuSym [76] and KleeSpectre [222]

aim to model cache usage with symbolic execution to detect speculative interference, which

is based on Klee symbolic execution engine. Following a different approach, Speculator [132]

collects performance counter values to detect mispredicted branches and speculative exe-

cution domain. Finally, Specfuzz [159] leverages a fuzzing strategy to test functions with

diverse set of inputs. Then, the tool analyzes the control flow paths and determines the most

likely vulnerable code snippets against speculative execution attacks.

4.2.2 Binary Analysis with Embedding

Binary analysis is one of the methods to analyze the security of a program. The analysis can

be performed dynamically [150] by observing the binary code running in the system. Alter-

natively, the binary can also be analyzed statically [193]. NLP techniques have been applied

to binary analysis in recent years. Mostly, the studies leverage the aforementioned techniques

to embed Assembly instructions and registers into a vector space. The most common usage

of NLP in the binary analysis is to find the similarities between files. Asm2Vec [52] leverages

a modified version of the PV-DM model to solve the obfuscation and optimization issues in

a clone search. Zuo et al. [249] and Redmond et al. [180] solve the binary similarity problem

by NLP techniques when the same file is compiled in different architectures. SAFE [135]

proposes a combination of skip-gram and RNN self-attention models to learn the embeddings

of the functions from binary files to find the similarities.
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4.2.3 GAN-based Text Generation

The first applications of GANs were mostly applied to computer vision to create new images

such as human faces [97,98], photo blending [233], video generation [221], and so on. However,

text generation is a more challenging task since it is more difficult to evaluate the performance

of the outputs. An application [117] of GANs is in the dialogue generation, where adversarial

learning and reinforcement are applied together. SeqGAN [246] introduces gradient policy

update with Monte Carlo search. LeakGAN [75] implements a modified policy gradient

method to increase the usage of word-based features in adversarial learning. RelGAN [154]

applies Gumbel-Softmax relaxation for training GANs as an alternative method to gradient

policy update. SentiGAN [226] proposes multiple generators to focus on several sentiment

labels with one multi-class generator. However, to the best of our knowledge, the literature

lacks GANs applied to the Assembly code generation. To fill this literature gap, we propose

SpectreGAN in Section 4.3.2.

4.3 SpectreGAN: Spectre Gadget Generation

We propose both mutational fuzzing and GAN-based gadget generation techniques to create

novel and diverse gadgets. In the following sections, details of both techniques and the

diversity analysis of the gadgets are given:

4.3.1 Gadget Generation via Fuzzing

We begin with fuzzing techniques to extend the base gadgets to create an extensive data set

consists of a million Spectre gadgets in four steps.

• Step 1: Initial Data Set There are 15 Spectre-V1 gadgets written in C by Kocher [104]

and two modified examples introduced by Spectector [72]. For each example, a different

attacker code is written to leak the entire secret data completely in a reasonable time.
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Algorithm 2: Gadget generation using mutational fuzzing
Input: An Assembly function A, a set of instructions Ib and sets of registers Rb for

different sizes of b
Output: A mutated Assembly function A′

1 G := Rb 7→ Ib
2 A′ = A
3 MaxOffset = length(A)
4 for 1:Diversity do
5 for Offset=1:MaxOffset do
6 for 1:Offset do
7 ib ← random(I)
8 rb ← random(Rb|G)
9 l← random(0 : length(A′))

10 Insert({ib|rb}, A′, l)

11 end
12 Test boundary check(A′)
13 Test Spectre leakage(A′)

14 end

15 end

• Step 2: Compiler variants and optimization levels Since our target data set is in

assembly code format, each Spectre gadget written in C is compiled into x86 assembly

functions using different compilers. We compiled each example with GCC, clang, and icc

compilers using -o0 and -o2 optimization flags. Therefore, we obtain 6 different assembly

functions from each C function with AT&T syntax.

• Step 3: Mutational fuzzing based generation

We generated new samples with an approach inspired by mutation-based fuzzing tech-

nique [197] as introduced in Algorithm 2. Our mutation operator is the insertion of random

assembly instructions with random operands. For an assembly function A with length L,

we create a mutated assembly function A′. We set a limit on the number of generated

samples per assembly function A for each Offset value, denoted as Diversity. We choose a

random instruction ib from the instruction set I, and depending on the instruction format of

ib; we choose random operands rb, which are compatible with the instruction in terms of bit

size, b. After proper instruction-operand selection, we choose a random position l in A′ and

insert {ib|rb} into that location. We repeat the insertion process until we reach the Offset
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value. The randomly inserted instruction and register list are given in Appendix A.2.

• Step 4: Verification of the generated gadgets

Finally, A′ is tested whether it is still a Spectre-V1 gadget or not. There are two verification

tests that are applied to the generated functions.

The first verification test is applied to make sure that the function still has the proper array

boundary-check for given user inputs. Since random instructions are inserted in random

locations in the gadget, a new instruction may alter the flags whose value is checked by the

original conditional jump. Once the flags are broken, the secret may be leaked without any

speculative execution. To test this case, the PoC Spectre-V1 attacker code [105] is modified

to supply only out-of-bounds inputs to A′, which prevents mistraining the branch predictor.

If the secret bytes in the PoC code are still leaked, we conclude that the candidate gadget

is broken and exclude it from the pool.

If a generated function A′ passes from the first test, we apply the PoC Spectre-V1 attack

to the gadget and exclude it if it does not leak the secret data through speculative execu-

tion. Additionally, the verification code is modified based on Kocher’s examples since each

example gadget leaks the secret in a different way. For instance, 4th example shifts the

user input by 1, which affects the leakage mapping in the cache. Therefore, we modified

the PoC code to compile it with the generated gadgets together to leak the whole secret.

This process is repeated for each example in Kocher’s gadget dataset [104], which yields

16 different verification codes. The secret in the gadgets is only decoded via implementing

the Flush+Reload technique. Other microarchitectural side-channels are not in the scope

of the verification phase.

Other Spectre variants such as SmotherSpectre [22] and NetSpectre [189] are not in our

scope. Hence, the generated gadgets that potentially include SmotherSpectre and NetSpec-

tre variants are not verified with other side-channel attacks. Our verification procedure only

guarantees that the extracted gadgets leak secret information through cache side-channel
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attacks. The verification method can be adjusted to other Spectre variants, which is ex-

plained further in Section 4.5.

At the end of the fuzzing-based generation, we obtained a data set of almost 1.1 million

Spectre gadgets1. The overall success rate of the fuzzing technique is 5% out of compiled

gadgets. The generated gadgets are used to train SpectreGAN in the next section.

4.3.2 SpectreGAN: Assembly Code Generation with GANs

We introduce SpectreGAN, which learns the fuzzing generated gadgets in an unsupervised

way and generates new Spectre-V1 variants from existing assembly language samples. The

purpose of SpectreGAN is to develop an intelligent way of creating assembly functions instead

of randomly inserting instructions and operands. Hence, the low success rate of gadget

generation in the fuzzing technique can be improved further with GANs. To the best of our

knowledge, the literature lacks GANs applied to the assembly code generation. To fill this

literature gap, we propose SpectreGAN in Section 4.3.2.

We build SpectreGAN based on the MaskGAN model, with 1.1 million examples gener-

ated in Section 4.3. Since MaskGAN is originally designed for text generation, we modify

the MaskGAN architecture to train SpectreGAN on assembly language. Finally, we evaluate

the performance of SpectreGAN and discuss challenges in assembly code generation.

4.3.2.1 SpectreGAN Architecture

SpectreGAN has a generator model that learns and generates x86 assembly functions and a

discriminator model that gives feedback to the generator model by classifying the generated

samples as real or fake as depicted in Figure 4.1.

Generator The generator model consists of encoder-decoder architecture (seq2seq) [196]

which is composed of two-layer stacked LSTM units. Firstly, the input assembly functions are

1The attacker codes for each example, the entire data set, SpectreGAN, and FastSpec code are available
at https://github.com/vernamlab/FastSpec
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pushq %rbp <MASK><MASK><MASK> %rbp

%rbp x̃t−1 x̃t x̃t+1 %rbp movb

pushq %rbp x̃t−1 x̃t x̃t+1 %rbp

e1G e2G e3G e4G e5G e6G d1G d2G d3G d4G d5G d6G

Attention Layer

Generator

pushq %rbp <MASK><MASK><MASK> %rbp pushq %rbp x̃t−1 x̃t x̃t+1 %rbp

e1D e2D e3D e4D e5D e6D d1D d2D d3D d4D d5D d6D

Attention Layer

at

ct
h̃t

hths

rtDiscriminator

bt

Critic

pushq %rbp

movq %rsp , %rbp

movb %sil , %al

movq %rdi , -8 ( %rbp )

movb %al , -9 ( %rbp )

movq -8 ( %rbp ) , %rdi
...

Input Gadget

Figure 4.1: SpectreGAN architecture. Blue and red boxes represent the encoder and
decoder LSTM units, respectively. Green boxes represent the softmax layers. The listed
assembly function (AT&T format) on the left is fed to the models after the tokenization

process. The critic model and the decoder part of the discriminator get the same sequence
of instructions in the adversarial training.

converted to a sequence of tokens T ′ = {x′
1, ..., x

′
N} where each token represents an instruc-

tion, register, parenthesis, comma, intermediate value or label. SpectreGAN is conditionally

trained with each sequence of tokens where a masking vectorm = (m1, ...,mN) with elements

mt ∈ {0, 1} is generated. The masking rate of m is determined as rm =
1

N

∑N
t=1 mt. m(T ′)

is the modified sequence where x′
t is replaced with <MASK> token for the corresponding posi-

tions of mt = 1. Both T ′ and m(T ′) are converted into the lists of vectors T = {x1, ..., xN}

and m(T ) by a lookup in a randomly initialized embedding matrix of size V ×H, where V

and H are the vocabulary size and embedding vector dimension, respectively. In order to

learn the masked tokens, T and m(T ) are fed into the encoder LSTM units of the generator

model. Each encoder unit outputs a hidden state hs which is also given as an input to the

next encoder unit. The last encoder unit (e6G in Figure 4.1) produces the final hidden state

which encapsulates the information learned from all assembly tokens.

The decoder state is initialized with the encoder’s final hidden state, and the decoder

LSTM units are fed with m(T ) at each iteration. To calculate the hidden state h̃t of each

decoder unit, the attention mechanism output and the current state of the decoder ht are
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combined. The attention mechanism reduces the information bottleneck between encoder

and decoder and eases the training [15] on long token sequences in assembly function data set.

The attention mechanism is implemented exactly same for both generator and discriminator

model which is illustrated in the discriminator part in Figure 4.1. The alignment score vector

at is calculated as:

at(s) =
eh

⊤
t hs∑N

s′=1 e
h⊤
t hs′

, (4.1)

where at describes the weights of hs, for a token x′
t at time step t, where h⊤

t hs is the score

value between the token x′
t and T ′. This forces decoder to consider the relation between

each instruction, register, label and other tokens before generating a new token. The context

vector ct is calculated as the weighted sum of hs as follows:

ct =
N∑

s′=1

at(s)hs′ . (4.2)

For a context vector, ct, the final attention-based hidden state, h̃t, is obtained by a fully

connected layer with hyperbolic tangent activation function,

h̃t = tanh(Wc[ct;ht]), (4.3)

where [ct;ht] is the concatenation of ct and ht with the trainable weights Wc. The output list

of tokens T̃ = (x̃1, ..., x̃N) is then generated by filling the masked positions for m(T ′) where

mt = 1. The probability distribution p(yt|y1:t−1, xt) is calculated as,

p(yt|y1:t−1, xt) =
eWsh̃t∑
eWsh̃t

, (4.4)

where yt is the output token and attention-based hidden state h̃t is fed into the softmax

layer which is represented by the green boxes in Figure 4.1. It is important to note that

the softmax layer is modified to introduce a randomness at the output of the decoder by a
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sampling operation. The predicted token is selected based on the probability distribution of

vocabulary, i.e. if a token has a probability of 0.3, it will be selected with a 30% chance.

This prevents the selection of the token with the highest probability every time. Hence, at

each run the predicted token would be different which increases the diversity in the generated

gadgets.

Discriminator The discriminator model has a very similar architecture to the generator

model. The encoder and decoder units in the discriminator model are again two-layer stacked

LSTM units. The embedding vectorsm(T ) of tokensm(T ′), where we replace x′
t with <MASK>

when mt = 1, are fed into the encoder. The hidden vector encodings hs and the encoder’s

final state are given to the decoder.

The LSTM units in the decoder are initialized with the final hidden state of the encoder

and hs is given to the attention layer. The list of tokens T̃ which represents the generated

assembly function by the generator model is fed into the decoder LSTM unit with teacher

forcing. The previous calculations for at(s), ct and h̃t stated in Equation 4.1, 4.2, and 4.3 are

valid for the attention layer in the discriminator model as well. The attention-based state

value h̃t is fed through the softmax layer which outputs only one value at each time step t,

pD(x̃t = xreal
t |T̃ ) =

eWsh̃t∑
eWsh̃t

, (4.5)

which is the probability of being a real target token xreal
t .

SpectreGAN has one more model apart from the generator and the discriminator models,

which is called the critic model, and it has only one two-layer stacked LSTM unit. The critic

model is initialized with zero states and gets the same input T̃ with the decoder. The output

of the LSTM unit at each time step t is given to the softmax layer, and we obtain

pC(x̃t = xreal
t |T̃ ) =

eWbht∑
eWbht

, (4.6)

which is an estimated version of pD. The purpose of introducing a critic model for probability
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estimation will be explained in Section 4.3.2.2.

4.3.2.2 Training

The training procedure consists of two main phases namely, pre-training and adversarial

training.

Pre-training phase The generator model is first trained with maximum likelihood esti-

mation. The real token sequence T ′ and masked version m(T ′) are fed into the generator

model’s encoder. Only the real token sequence T ′ is fed into the decoder using teacher forc-

ing in the pre-training. The training maximizes the log-probability of generated tokens, x̃t

given the real tokens, x′
t, where mt = 1. Therefore, the pre-training objective is

1

N

N∑
t=1

log p(m(x̃t)|m(x′
t)), (4.7)

where p(m(x̃t)|m(x′
t)) is calculated only for the masked positions. The masked pre-training

objective ensures that the model is trained for a Cloze task [203].

Adversarial training phase The second phase is adversarial training, where the genera-

tor and the discriminator are trained with the GAN framework. Since the generator model

has a sampling operation from the probability distribution stated in Equation 4.4, the overall

GAN framework is not differentiable. We utilize the policy gradients to train the generator

model, as described in the previous works [56,246].

The reward rt for a generated token x̃t is calculated as the logarithm of pD(x̃t = xreal
t |T̃ ).

The aim of the generator model is to maximize the total discounted rewardsRt = m(
∑N

s=t γ
srs)

for the fake samples, where γ is the discount factor. Therefore, for each token, the genera-

tor is updated with the gradient in Equation 4.8 using the REINFORCE algorithm, where

bt = log pC(x̃t = xreal
t |T̃ ) is the baseline rewards by the critic model. Subtracting bt from Rt
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helps reducing the variance of the gradient [56].

∇θEG[Rt] = (Rt − bt)∇θ logGθ(x̃t) (4.8)

To train the discriminator model, both real sequence T and fake sequence T̃ are fed into

the discriminator. Then, the model parameters are updated such that log pD(x̃t = xreal
t |T̃ ) is

minimized and log pD(xt = xreal
t |T ) is maximized using maximum log-likelihood estimation.

4.3.2.3 Tokenization and Training Parameters

Firstly, we pre-process the fuzzing generated data set to convert the assembly functions

into sequences of tokens, T ′ = (x′
1, ..., x

′
N). We keep commas, parenthesis, immediate val-

ues, labels, instruction and register names as separate tokens. To decrease the complex-

ity, we reduce the tokens’ vocabulary size and simplify the labels in each function so that

the total number of different labels is minimum. The tokenization process converts the in-

struction ”movq (%rax), %rdx” into the list ["movq", "(", "%rax", ")", ",", "%rdx"]

where each element of the list is a token x′
t. Hence, each token list T ′ = {x′

1, ..., x
′
N} represents

an assembly function in the data set.

The masking vector has two different roles in the training. While a random masking

vector m = (m1, ...,mN) is initialized for the pre-training, we generate m as a contiguous

block with a random starting position in the adversarial training. In both training phases,

the first token’s mask is always selected as m1 = 0, meaning that the first token given to

the model is always real. The masking rate, rm determines the ratio of masked tokens in an

assembly function whose effect on code generation is analyzed further in Section 4.3.2.4.

SpectreGAN is configured with the embedding vector size of d = 64, generator learning

rate of ηG = 5 × 10−4, discriminator learning rate of ηD = 5 × 10−3, critic learning rate of

ηC = 5×10−7 and discount rate of γ = 0.89 based on the MaskGAN implementation [56]. We

select the sequences with a maximum length of 250 tokens, building the vocabulary with a
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size of V = 419. We separate 10% of the data set for model validation. SpectreGAN is trained

with a batch size of 100 on NVIDIA GeForce GTX 1080 Ti until the validation perplexity

converges in Figure 4.2. The pre-training lasts about 50 hours, while the adversarial training

phase takes around 30 hours.

4.3.2.4 Evaluation

SpectreGAN is based on learning masked tokens with the surrounding tokens. The masking

rate is not a fixed value, which is determined based on the context. Since SpectreGAN is the

first study to train on Assembly functions, the masking rate choice is of utmost importance

to generate high-quality gadgets. Typically, NLP-based generation techniques are evaluated

with their associated perplexity score, which indicates how well the model predicts a token.

Hence, we evaluate the performance of SpectreGAN with various masking sizes and their

perplexity scores. In Figure 4.2, the perplexity converges with the increasing number of

training steps, which means the tokens are predicted with a higher accuracy towards the

end of the training. SpectreGAN achieves lower perplexity with higher masking rates, which

indicates that higher masking rates are more preferable for SpectreGAN.

Even though the higher masking rates yield lower perplexity and assembly functions of

high quality in terms of token probabilities, our purpose is to create functions which behave

as Spectre gadgets. Therefore, as a second test, we generated 100,000 gadgets for 5 different

masking rates. Next, we compiled our gadgets with the GCC compiler and then tested them

with all the attacker code to verify their secret leakage. When SpectreGAN is trained with

a masking rate of 0.3, the success rate of gadgets increases by up to 72%. Interestingly, the

success rate drops for other masking rates, demonstrating the importance of masking rate

choice. In total, 70,000 gadgets are generated with a masking rate of 0.3 to evaluate the

performance of SpectreGAN in terms of gadget diversity in Section 4.3.3.

To illustrate an example of the generated samples, we fed the gadget in Listing 4.1 to

SpectreGAN and generated a new gadget in Listing 4.2. We demonstrate that SpectreGAN
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Figure 4.2: (Above) The validation perplexity decreases at each training step and
converges for all rm. (Below) Spectre gadget success rates are evaluated when different
masking rates are used to train SpectreGAN. Spectre gadget success rate shows the

percentage of gadgets out of compiled functions.

is capable of generating realistic assembly code snippets by inserting, removing, or replacing

the instructions, registers, and labels. In the Listing 4.2, the lines that start with the

instructions written with red color are generated by SpectreGAN, and they correspond to

the masked portion of Spectre-V1 gadget given in Listing 4.1.
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1 victim_function:
2 .cfi startproc
3 movl size(%rip) ,%eax
4 cmpq %rdi,%rax
5 jbe .L0
6 leaq array1(%rip),%rax
7 movzbl (%rdi,%rax),%eax
8 ror $1,%rsi
9 shlq $9,%rax

10 leaq array2(%rip),%rcx
11 movss %xmm8,%xmm4
12 movb (%rax,%rcx),%al
13 andb %al,temp(%rip)
14 movd %xmm1,%r14d
15 test %r15,%rcx
16 sbbl %r13d,%r9d
17 .L0:
18 retq
19 cmovll %r8d,%r10d
20 .cfi endproc

Listing 4.1: Input Spectre-V1 gadget

1 victim_function:
2 .cfi startproc
3 movl size(%rip) ,%eax
4 cmpq %rdi,%rax
5 jbe .L0
6 leaq array1(%rip),%rax
7 movzbl (%rdi,%rax),%eax
8 ror $1,%rsi
9 shlq $9,%rax

10 movb array2(%rdi),%al
11 andb %al,temp(%rip)
12 .L1:
13 andb %r13b,%al
14 movb array2(%rax),%al
15 andb %al,temp(%rip)
16 sbbl %r13d,%r9d
17 .L0:
18 retq
19 cmovll %r8d,%r10d
20 .cfi endproc

Listing 4.2: Generated gadget by SpectreGAN

4.3.3 Diversity and Quality Analysis of Generated Gadgets

In total, 1.2 million gadgets are generated by the mutational fuzzing technique and Spec-

treGAN. Since the gadgets are derived from existing examples, it is crucial to analyze their

diversity and quality. The diversity is measured by syntactic analysis, e.g., counting the num-

ber of unique n-grams in gadgets. For the quality metric, we monitor performance counters

while the gadgets are executed. 5000 gadgets are randomly selected from each gadget gen-

eration technique to perform syntactic and microarchitectural analysis. Furthermore, novel

gadgets that are not detected by oo7 [224] and Spectector [72] tools are given to show that

our gadget generation techniques produce meaningful Spectre-V1 gadgets.

4.3.3.1 Syntactic Analysis

In NLP applications, the diversity of the generated texts is evaluated by counting the number

of unique n-grams. The most common metrics for the text diversity are perplexity and

BLEU scores that are calculated based on the probabilistic occurrences of n-grams in a

sequence. The higher number of n-grams indicates that an NLP model learns the data set
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distribution efficiently and produces new sequences with high diversity. However, both scores

are obtained during the training phase; thus, making it impossible to evaluate the fuzzing

generated gadgets since there is no training phase. Instead, we conduct diversity analysis by

counting the unique n-grams introduced by fuzzing and SpectreGAN methods after all the

gadgets are generated.

The number of unique n-grams in generated gadgets is compared with 17 base exam-

ples in Table 4.1. The unique n-grams are calculated as follows: First, unique n-grams

produced by fuzzing are identified and stored in a list. Then, additional unique n-grams

introduced by SpectreGAN are noted. Therefore, the unique n-grams generated by Spectre-

GAN in Table 4.1 represent the number of n-grams introduced by SpectreGAN, excluding

fuzzing generated n-grams.

Table 4.1: Table shows the number of unique n-grams for base gadgets and generated
gadgets by fuzzing and SpectreGAN methods. In the last column the total number of

unique n-grams are given as well as the increase factor that improves with the increasing
n-grams.

n Base Fuzzing SpectreGAN Total

2 2069 15,448 7,462 22,910 (×11)
3 3349 181,606 91,851 273,457 (×82)
4 4161 639,608 460,317 1,099,925 (×264)
5 4747 998,279 921,519 1,919,798 (×404)

In total, the number of unique bigrams (2-grams) is increased to 22,910 from 2,069, which

is more than 10 times raise. While new instructions and registers added by fuzzing improve

the gadgets’ diversity, SpectreGAN contributes to the gadget diversity by producing unique

perturbations. Since the instruction diversity increases drastically compared to base gadgets,

the unique 5-grams reach up to almost 2 million, 400 times higher than the base gadgets.

The results show that both fuzzing and SpectreGAN span the diversity in the generated

gadgets. High diversity in the gadget data set also results in microarchitectural behavior

diversity as well as new Spectre-V1 gadgets that were not previously considered during the

design process of previous detection mechanisms.
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Figure 4.3: The distribution of base (red-triangle), fuzzing generated (blue-square) and
SpectreGAN generated (green-circle) gadgets is given for issued and retired µops counters.

Both SpectreGAN and fuzzing techniques generate diverse set of gadgets in Haswell
architecture.

4.3.3.2 Microarchitectural Analysis

Another purpose of gadget generation is to introduce new instructions and operands to create

high-quality gadgets. To assess the quality of the gadgets, we analyze gadgets’ microarchi-

tectural characteristics. The first challenge is to examine the effects of instructions in the

transient domain since they are not visible in the architectural state. After carefully ana-

lyzing the performance counters for Haswell architecture, we determined that two counters,

namely, uops issued : any and uops retired : any give an insight into gadgets’ microarchi-

tectural behavior. uops issued : any counter is incremented every time a µop is issued, which

counts both speculative and non-speculative µops. On the other hand, uops retired : any

counter only counts the executed and committed µops, which automatically excludes spec-

ulatively executed µops.

The performance counter distribution of generated gadgets and base gadgets are given

in Figure 4.3. The gadget quality is measured by the number of instructions in the transient

domain after a gadget passes the verification step. The exploitable gadgets in the commercial
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software have many instructions that are speculatively executed until the secret is leaked. If

our detection tool in Section 4.4 is only trained with simple gadgets from Kocher’s examples,

the success rate would be low in large-scale software binaries. Moreover, the gadgets that

are detected in the case studies are very similar to the generated gadgets which have more

instructions in the transient domain. A similar observation is also shared in [225], where

the authors claim that Spectre gadgets have up to 150 instructions between the conditional

branch and speculative memory access in the detected gadgets. Since our aim is to create

realistic gadgets by inserting various instructions, we assume that gadget quality increases

in parallel when a gadget is close to the x-axis and far from the y-axis.

It is more likely to obtain high-quality gadgets with fuzzing method as new instructions

and operands are randomly added. On the other hand, SpectreGAN learns the essential

structure of the fuzzing generated gadgets, which yields almost the same number of samples

close to the x-axis in Figure 4.3. Moreover, the advantage of SpectreGAN is to automate the

creation of gadgets with a higher accuracy (72%) compared to the fuzzing technique (5%).

4.3.3.3 Detection Analysis

Even though the microarchitectural and syntactic analyses show that fuzzing and Spectre-

GAN can produce diverse and high-quality sets of gadgets, we aim to enable a comprehensive

evaluation of detection tools and determine the most interesting gadgets in our data set. For

this reason, the generated gadgets are fed into Spectector [72] and oo7 [224] tools to deter-

mine the novelty of the gadgets.

oo7 tool leverages taint analysis to detect Spectre-V1 gadgets. It is based on the Binary

Analysis Platform (BAP) [48] which forwards taint propagation along all possible paths after

a conditional branch is encountered. oo7 2 is built on a set of hand-written rules which cover

the existing examples by Kocher [104]. Although our data set size is 1.2 million, we have

selected 100,000 samples from each gadget example uniformly random due to the immense

2https://gitlab.com/igoto/spectre-detector
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time consumption of oo7 (150 hours for 100K gadgets), which achieves a 94% detection

rate.

1 void victim_function(size_t x){

2 if(global_condition)

3 x = 0;

4 if(x < size)

5 temp &= array2[array1[x] * 512];

6 }

Listing 4.3: CMOV gadget: An example Spectre gadget in C format. When it is compiled

with gcc-7.5 -o2 optimization level, CMOVcc gadget bypasses oo7 tool. The generated

assembly version is given in Appendix A.1.

Interestingly, specific gadget types from both fuzzing and SpectreGAN are not caught

by oo7. When a gadget contains cmov or xchg or set instruction and its variants, it is

not identified as a Spectre gadget. Hence, we introduce these gadgets as novel Spectre-V1

gadgets listed in Listing 4.3 and Listing 4.4. Their corresponding assembly snippets are also

given in Appendix A.1.

1 size_t prev = 0xff;

2 void victim_function(size_t x) {

3 if (prev < size)

4 temp &= array2[array1[prev] * 512];

5 prev = x;

6 }

Listing 4.4: XCHG gadget: When a past value, that is controlled by the attacker, is used to

leak the secret in the Spectre gadget, oo7 cannot detect the XCHG gadget. This example

show that control-flow graph extraction is not efficiently implemented in oo7 tool.

We identified two potential issues of static taint analysis method in oo7 tool. First, if a

portion of a tainted variable is modified by an instruction such as cmov or set, the tainted

variable is not tracked by the tool. However, an attacker still controls the remaining portion

87



of the variable, which makes it possible to leak the secret from memory. In some cases,

the implementation of static taint analysis is not sufficiently accurate to track partially

modified tainted variables due to under-tainting. Secondly, the tainted variables are not

tracked between the iterations of a loop. If an old attacker-controlled variable is used to

access the secret, oo7 tool is not able to taint the old variable between the iterations of a for

loop. Hence, any old attacker-controlled variable can be used to bypass the tool. This shows

that control flow graphs of multiple iterations may not be extracted correctly by oo7. Both

weaknesses show that hand-written rules do not generalize well for Spectre gadget detection

when new Spectre-V1 gadgets are discovered.

Spectector [72] makes use of a symbolic execution technique to detect the potential

Spectre-V1 gadgets. For each assembly file, Spectector is adjusted to track 25 symbolic

paths of at most 5000 instructions each, with a global timeout of 30 minutes. The remaining

parameters are kept as default.

First, we eliminate the gadgets that include unsupported instructions as these gadgets

are never detected by Spectector. When we analyze the remaining gadgets, 1% of the gadgets

are not detected successfully. Then, undetected gadgets are examined to determine novel

gadgets.

We determined two issues in the Spectector tool. The first issue is related to the barrier

instructions. Even though lfence, sfence and mfence instructions have different purposes, the

tool treats them as equal instructions. For instance, if an sfence instruction is present after

the conditional branch, the tool classifies the gadget as safe. However, sfence instruction

has no effect on the load operation so, the gadget still leaks the secret. Hence, Spectector’s

modeling of fences does not distinguish the differences between various x86 fence instructions.

The second issue is about 8-bit registers in which a partial information of the elements in

array[x] is stored. When 8-bit registers are used to modify the elements in Listing 4.5,

Spectector is no longer able to detect the gadgets. This second issue is also mentioned

in [72], i.e., sub-registers are currently not supported by the tool. Overall, these issues are
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due to the problems in the translation from x86 assembly into Spectector’s intermediate

language.

We show that our large-scale diverse gadget data set establishes a ground truth to evaluate

the detection tools accurately. As shown in the case studies on Spectector and oo7, the

success rate on detecting the gadgets in our 1.1 million sample data set could serve as a

generic evaluation metric while identifying the flaws in the detection tools.

1 victim_function :
2 movl s i z e (%r ip ) , %eax
3 cmpq %rax , %rdi
4 j a e .B1.2

5 movzbl array1(%rdi ) , %eax
6 sh lq $9 , %rax
7 xorb %al , %al

8 movb array2(%rax ) , %dl
9 andb %dl , temp(%rip )

10 .B1.2 :
11 r e t

Listing 4.5: xorb %al, %al is added to 1st example in Kocher’s examples [104]. Spectector is
no longer able to detect the leakage due to the zeroing %al register.

4.4 FastSpec: Fast Gadget Detection Using BERT

In an assembly function representation model, the main challenge is to obtain the representa-

tion vectors, namely embedding vectors, for each token in a function. Since the skip-gram and

RNN-based training models are surpassed by the attention-only Transformer models [220]

in sentence classification tasks, we introduce FastSpec, which applies a lightweight BERT

version. Transformer models outperform skip-gram and RNN models primarily due to their

self-attention mechanism, which captures long-range dependencies and contextual relation-

ships across the entire input sequence, something traditional models struggle with. Unlike

RNNs, Transformers process input tokens in parallel, enabling faster and more efficient train-

ing on large datasets. Their attention mechanism assigns varying importance to different

words, allowing transformers to understand subtle contextual nuances that skip-gram and
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Figure 4.4: 3-D visualization for the distribution of instructions and registers after t-SNE is
applied to embedding vectors. Similar instructions and registers have the same colors. The
unrelated instructions are separated from each other in the three-dimensional space after

the pre-training.

RNN models often overlook. Additionally, Transformers use positional embeddings to cap-

ture word order without relying on sequential processing, avoiding the vanishing gradient

issues common in RNNs. This architectural simplicity and scalability to large datasets and

parameter sizes make transformers significantly more flexible and effective.

4.4.1 Training Procedures

We adopt the same training procedures with BERT on assembly functions, namely, pre-

training and fine-tuning.
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4.4.1.1 Pre-training

The first procedure is pre-training, which includes two unsupervised tasks. The first task

follows a similar approach to MaskGAN by masking a portion of tokens in an assembly

function. The mask positions are selected from 15% of the training sequence, and the selected

positions are masked and replaced with <MASK> token with 0.80 probability, replaced with a

random token with 0.10 probability, or kept as the same token with 0.10 probability. While

the masked tokens are predicted based on other tokens’ context, the context vectors are

obtained by the multi-head self-attention mechanism.

The second task is the next sentence prediction, where the previous sentence is given as

input. Since our assembly code data has no paragraph structure where the separate long

sequences follow each other, each assembly function is split into pieces with a maximum

token size of 50. For the next sentence prediction task, we add <CLS> to each piece. For each

piece of function, the following piece is given with the label IsNext, and a random piece of

function is given with label NotNext. FastSpec is trained with the self-supervised approach.

At the end of the pre-training procedure, each token is represented by an embedding

vector with a size of H. Since it is impossible to visualize the high dimensional embed-

ding vectors, we leverage the t-SNE algorithm [130] which maps the embedding vectors to

a three-dimensional space as shown in Figure 4.4. We illustrate that the embedding vec-

tors for similar tokens are close to each other in three-dimensional space, as this outcome

shows that the embedding vectors are learned efficiently. In Figure 4.4, the registers with

different sizes, floating-point instructions, control flow instructions, shift/rotate instructions,

set instructions, and MMX instructions/registers are accumulated in separate clusters. The

separation among different types of tokens enables achieving a higher success rate in the

Spectre gadget detection phase.
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4.4.1.2 Fine-tuning

The second procedure is called fine-tuning, which corresponds to a supervised sequence

classification in FastSpec. This phase enables FastSpec to learn the conceptual differences

between Spectre gadgets and general-purpose functions through labeled pieces. The pieces

created for the pre-training phase are merged into a single sequence with a maximum of 250

tokens. The disassembled object files, which have more than 250 tokens, split into separate

sequences. Each sequence is represented by a single <CLS> token at the beginning. The

benign files are labeled with 0, and the gadget samples are labeled with 1 for the supervised

classification. Then, the embedding vectors of the corresponding <CLS> token and position

embedding vectors for the first position are summed up. Finally, the resulting vector is fed

into the softmax layer, which is fine-tuned with supervised training. The output probabilities

of the softmax layer are the predictions on the assembly code sequence.

4.4.2 Training Details and Evaluation

We combine the assembly data set generated in Section 4.3 and the disassembled Linux

libraries to train FastSpec. Although Linux libraries may contain Spectre-V1 gadgets, we

assume that the total number of hidden Spectre gadgets is negligible, comparing the data

set’s total size. Therefore, the model treats those gadgets as noise, which does not affect the

performance of FastSpec. In total, a data set of 107 million lines of assembly code is collected,

which consists of 370 million tokens after the pre-processing. We separate 80% of the data

set for training and validation, and the remaining 20% is used for FastSpec evaluation. While

the same pre-processing phase in Section 4.3.2.3 is implemented, we further merge similar

tokens to decrease the total vocabulary size. We replace all labels, immediate values and out-

of-vocabulary tokens with <label>, <imm> and <UNK>, respectively. After the pre-processing,

the vocabulary size is reduced to 960.

We choose the number of Transformer blocks as L = 3, the hidden size as H = 64, and

the number of self-attention heads as A = 2. We train FastSpec on NVIDIA Titan XP
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GPU. The pre-training phase takes approximately 6 hours, with a sequence length of 50.

We further train the positional embeddings for 1 hour with a sequence length of 250. The

fine-tuning takes only 20 minutes on the pre-trained model to classify all types of samples in

the test data set correctly. Note that the training time is less than previous NLP techniques

in the literature since BERT [51] leverages GPU parallelization significantly. The analysis

duration is measured on Intel Xeon CPU E5-2637 v2 @3.50GHz.

In the evaluation of FastSpec, we obtained 1.3 million true positives and 110 false positives

(99.9% precision rate) in the test data set, demonstrating the high performance of FastSpec.

We assume that the false positives are Spectre-like gadgets in Linux libraries, which need to

be explored deeply in future work. Moreover, we only have 55 false negatives (99.9% recall

rate), which yield a 0.99 F-1 score on the test data set.

In the next section, we show that FastSpec achieves high performance and extremely

fast gadget detection without needing any GPU acceleration since FastSpec is built on a

lightweight BERT implementation.

4.4.3 Case Study: OpenSSL Analysis

We analyze FastSpec to validate with a separate ground truth data set other than the one

we generate in Section 4.3. The purpose of this analysis is to measure the effect of the

covariate shift and robustness of FastSpec against a real-world benchmark. We focus on

OpenSSL v3.0.0 libraries [168], as it is a popular general-purpose cryptography library in

commercial software. We use a subset of functions from RSA, ECDSA, and DSA ciphers in

the OpenSSL speed benchmark. The function labels are obtained by running the SpecFuzz

tool, which is a dynamic detection tool to find Spectre-V1 vulnerabilities using fuzzing [159].

The functions in which the SpecFuzz tool finds vulnerabilities are labeled as positive, and

the remaining ones are labeled as negative. We also exclude the functions without any

conditional branch instructions from the positive class and the functions that have a call to

them. In total, 4242 functions are extracted from the aforementioned cryptography libraries
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to analyze with FastSpec. Positive and negative classes include 720 and 2500 functions,

respectively.

First, we apply the same pre-processing procedures, as explained in Section 4.4.2 to

obtain the tokens. The total number of tokens is more than 4 million. Since the labels are

assigned on function-level, we choose the maximum confidence rate that we get among all the

sliding windows. The maximum confidence rate is assigned as the prediction of our model for

the corresponding input function. In order to find the optimal sliding window size, we scan

through the functions with various different window sizes and compare the performances.

Figure 4.5 shows that FastSpec achieves the highest performance to detect functions with

Spectre-V1 vulnerability when the window size is set to 80 tokens, which corresponds to

0.998 as an area under the curve (AUC) value. The optimal threshold value is found as 0.48,

which corresponds to the maximum F-score. The highest F-score is achieved as 0.99, where

the false positive rate (benign functions that are mistakenly classified as Spectre gadget)

is 0.04%, and false negative rate (functions that are mistakenly classified as benign) is 2%.

We claim that further analysis of the detected functions by using symbolic execution or

taint analysis tools can reduce the number of false negative samples and provide an efficient

end-to-end security solution against Spectre-V1 vulnerability.

4.4.4 Case Study: Phoronix Test Suite Analysis

The performance comparison between FastSpec and other static analysis tools is evaluated on

the Phoronix Test Suite v5.2.1 [136]. For the ground truth, the SpecFuzz technique is chosen

as the tool that dynamically analyzes the binaries, and exploitable gadgets can be detected

with a higher success rate compared to static tools. The selected benign files have source

code since it is required to obtain the assembly files for the Spectector tool. The assembly

files are generated by compiling the source C code with the GCC compiler. On the other

hand, the binary files are generated at the test installation; therefore, there is no further

processing required before testing the binary files in oo7. For FastSpec, the disassembled
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Figure 4.5: Solid line stands for the ROC curve of FastSpec for Spectre gadget class.
Dashed line represents the reference line.

binary files are given as input. Note that since the larger benchmarks take more time to be

analyzed by oo7, we preferred small size files to make the comparison with Spectector and

FastSpec easier.

Timing The overall timing results for various benchmarks are given in Table 4.2. The

analysis time of oo7 and Spectector increases drastically with the number of conditional

branches since the tools analyze both paths after a conditional branch is encountered. On

the other hand, FastSpec analysis time increases linearly with the binary size. We observe

that the pre-processing phase takes the major portion in the analysis time of FastSpec while

the inference time is in the order of microseconds. We fuzz the Crafty benchmark for 24

hours and other benchmarks for 1 hour using SpecFuzz under the default configuration 3.

The effect of the increasing number of branches on time consumption is clear in the

Crafty and Clomp benchmarks in Table 4.2. Even though the Crafty benchmark has only

10,796 branches, oo7 and Spectector analyze the file in more than 10 days (the analysis

process is terminated after 10 days) and 2 days, respectively. In Figure 4.6, we show that

both tools are not sufficiently scalable to be used in real-world applications, especially when

3https://github.com/OleksiiOleksenko/SpecFuzz
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the files contain thousands of conditional branches. Especially oo7 shows an exponential

behavior because of the forced execution approach, which executes every possible path of

the conditional branches. In contrast, FastSpec analyzes the same Crafty benchmark under

6 minutes, which is a significant improvement.

Note that the Byte benchmark has a higher number of branches than most of the remain-

ing benchmarks. However, it consists of multiple independent files that need to be tested

separately, taking less time to analyze in total. Consequently, FastSpec is faster than oo7

and Spectector 455 times and 75 times on average, respectively.
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Figure 4.6: The processing time of FastSpec is independent of the number of branches
whereas for Spectector and oo7 the analysis time increases drastically.

Baseline Evaluation The number of gadgets found by the tools varies significantly.

While oo7 and FastSpec report each Spectre gadget in a binary file, Spectector outputs

whether a function contains a Spectre gadget or not. To be consistent, if a control or data

leakage is found in a function, it is reported as a vulnerable function by all three tools.

The precision and recall rates for oo7, Spectector and FastSpec are given in Table 4.2.

The precision is calculated as TP/(TP + FP ). TP is the number of overlapping gadgets

detected by a tool. FP is the number of functions that are classified as Spectre gadgets

mistakenly. The recall value is computed as TP/(TP + FN) where FN is the number of

gadgets that are not detected by a tool.

In some cases, oo7 is not able to track the control flow when the number of function calls

increases in a gadget, which yields high false negatives and low recall. Thus, oo7 suffers

from the extraction of complete control flow graph. Spectector tends to give more false

positives compared to oo7 and FastSpec. This is because some unsupported instructions

are skipped by the tool and the broken Spectre gadgets by specific instructions are still

classified as Spectre gadget. On the other hand, FastSpec has low false negatives since all

the Spectre gadget patterns are detected with a confidence rate higher than 0.48. When the

file size increases, the false positives may increase in parallel. However, these gadgets can be

verified with other tools to increase the confidence. As a result, FastSpec scans the functions
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extremely quicker than other tools without sacrificing the precision and recall rates. Our

tool also guarantees the security of the scanned assembly functions by detecting almost all

Spectre gadgets with low FN rates. FastSpec outperforms all the compared tools in terms

of recall and precision rates by a large margin.

4.5 Discussion and Limitations

4.5.1 Gadget Verification

The gadget verification process in Section 4.3.1 is implemented in an isolated core since

the system interrupts frequently mistrain the targeted branch instructions in the gadgets,

which decreases the gadget verification success rate significantly. This situation particularly

affects the first step of the verification process where all the inputs are out-of-bounds, and

the target branch is not expected to be mistrained. Therefore, there is a need for an isolated

environment to run the verification code for Spectre gadgets. Even though the data cache

side-channel is used for the secret decoding, other side-channels can be used to decode the

secret in a Spectre gadget such as TLB structure. The secret elements in array1 should

be multiplied with a constant to decode the secret into different cache lines or pages. In

the base examples [104], the secret elements are multiplied by 512 or 4096. The verification

code only selects the Spectre gadgets with these specific multiplicands, which potentially

introduces a bias in the data set. Since all multipliers in the Spectre gadgets are represented

with the same token, <imm>, our detection tool is not affected by the bias introduced by

different multipliers. For instance, in OpenSSL and in Phoronix, we observed that gadgets

with different multiplicands are detected by our detection tool.

Our verification codes also focus on more complex leakage snippets in which the secret is

not simply leaked with a simple multiplication. We observed that similar control-flow state-

ments and more complex encoding techniques are present among Kocher’s examples [104]

(Examples 10–15). After new gadgets are generated from these examples, we observed that
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these gadgets can still be detected by our verification code. However, if the leakage mecha-

nism in the gadget is altered significantly, it is likely that the secret in the generated gadget is

not recovered during verification. Unfortunately, this introduces a bias in our data set as the

diversity of the gadgets is limited. Moreover, our detection tool might not be able to detect

more complex gadgets as these gadgets are not included in the training data set. To include

more complex gadgets in the data set, the verification code can be changed dynamically by

analyzing each generated assembly code, which is left as future work.

4.5.2 Scalability and Flexibility

Other Spectre Variants: Since pre-training teaches the general assembly syntax and takes

a major part in the training process, our pre-trained FastSpec model can be used after fine-

tuning for any assembly code task. The modifications are needed only to Step 1 and Step 4

in Section 4.3.1 since we need an initial data set and verification code to build up a larger

data set. For Spectre v1.1 [102], our verification code can be adapted by adding one more

attacker-controlled input to verify whether a speculative load is executed or not. Similarly,

the speculatively written value in Spectre v1.2 [102] can be mapped to cache lines to verify

the generated gadgets. For Spectre v2 [105], verification procedure needs to be completely

changed as the branch instruction is not a conditional branch anymore. For this purpose,

the verification code can be modified to mistrain the indirect jumps with attacker known

addresses, and then, the secret bytes in the attacker-controlled function are mapped to

separate cache lines. Since Spectre-RSB [107] works in a similar way, except ret instruction

is targeted, the same verification procedure can be adapted. Finally, in Spectre v4 [82],

the verification code can supply attacker-controlled variables to specific registers, and then,

speculatively loaded data can be decoded to a shared memory to verify the gadgets.

Other Attacks: Our approach can detect the target SMoTher-gadgets [22] in the code

space. The verification procedure in Section 4.3.1, specifically Step 4, needs to be changed

to analyze port fingerprints. For this purpose, the timing of various instructions that are
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mapped to certain ports can be measured to detect the leaked secrets as implemented in [11].

It is highly likely that the verification takes more time for the generated gadgets since we

need to collect more timings to distinguish the cases between secret leakage and no secret

leakage. In NetSpectre [189], there are two types of gadgets. The leak gadget is very similar

to Spectre v1 whereas only one bit is transmitted. Hence, the verification procedure can be

modified to profile a single cache line instead of 256 cache lines. The transmit gadget is used

to leak the secret data over the network and has a different structure than the leak gadget.

To detect the transmit gadgets with our verification code, the Thrash+Reload technique can

be adapted to measure the timing difference between cached and non-cached accesses over

the network. Again, the verification procedure potentially takes more time to analyze the

generated gadgets since the secret transmission speed is significantly lower than Spectre V1.

Other Architectures and Applications: Although we limit the scope of this work to

generating and detecting the Spectre-V1 gadgets on x86 assembly code, the use of Spectre-

GAN and FastSpec can always be extended to other architectures and applications with only

mild effort. Furthermore, specially designed architectures are not needed when pre-trained

embedding representations are used [51]. Therefore, the pre-trained FastSpec model can be

used for any other vulnerability detection, cross-architecture code migration, binary clone

detection, and many other assembly-level tasks.

The fuzzing tool increases the diversity of the generated gadgets by introducing variations

that are later learned by the FastSpec tool. In addition, the detection tool learns the generic

gadget type rather than training on small details. In Section 4.4.2, the evaluation of FastSpec

also shows that the tool can detect the potential Spectre gadgets with a 99.9% precision rate.

4.5.3 Comparison of FastSpec with Other Tools

The most significant advantage of FastSpec is the capability of detecting Spectre gadgets

quicker than other tools. If an instruction is not introduced in the training phase, the

instruction is treated as unknown, and it has a slight effect on the accuracy of FastSpec
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since a large window of instructions is analyzed to decide on the Spectre gadgets. While

the unsupported instructions are an important issue for the Spectector tool, FastSpec can be

deployed to other architectures such as ARM and AMD. While small modifications in the

assembly code increase the chance of bypassing other tools, our tool is more robust against

small modifications. It is easier to adapt FastSpec to other Spectre variants as the vector

representations of assembly instructions can be directly used to train a separate model for

the variants. Moreover, over-tainting and under-tainting issues decrease the accuracy of

taint-based static analysis techniques. However, FastSpec tracks the registers, instructions,

and memory accesses with a vector representation, which makes it more reliable in large-scale

projects.

4.5.4 Scope and Limitations

Scope: Our scope is to generate Spectre-V1 gadgets by using mutational fuzzing and Spec-

treGAN methods as well as to detect potential Spectre gadgets in benign programs by

significantly reducing the analysis time.

Guarantees: Our verification methods in Step 4.1 guarantee that the generated Spectre-

V1 gadgets leak the secret bytes through cache side-channel attacks. Moreover, the FastSpec

tool detects the Spectre gadgets with a high precision and recall rate by identifying the gadget

patterns at the assembly level. Possible False Positive outputs do not affect the security

guarantee provided by FastSpec. The analysis time is significantly reduced compared to

rule-based detection tools.

FastSpec generalizes well, i.e., it can recognize similar patterns that are not in our training

dataset. However, it does not provide assurance of coverage (completeness) since FastSpec is

not based on hand-written rules or formal analysis. In order to decrease the False Negative

rate, the probabilistic threshold is kept low in the case studies. In contrast, while FastSpec

does not provide such guarantees, it is much faster and scales to larger code-bases.

Assembly Code Generation: VAEs are widely used for learning data representations
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and have been applied to text and image generation tasks. However, they have some key

limitations. For example, VAEs often smooth out details in their outputs, which can make

them less suitable for applications that require fine-grained precision. They also face an issue

known as posterior collapse, where the latent space contributes little to the final output,

reducing their effectiveness for tasks that demand high levels of accuracy and detail. This

also makes it less suitable for increasing the diversity of the generated gadgets.

The challenges faced in the regular text generation with GANs [56, 246] also exist in

assembly code generation. One of the challenges is mode collapse in the generator models.

Although training the model and generating the gadgets with masking help reduce mode

collapse, we observed that our generator model still generates some tokens or patterns of

tokens repetitively, reducing the quality of the generated samples and compilation and real

gadget generation rates.

In regular text generation, even if the position of a token changes in a sequence, the

meaning of the sequence may change while it would still be somewhat acceptable. However,

if the position of a token in an assembly function changes, it may result in a compilation

error because of the incorrect syntax. Even if the generated assembly function has the correct

assembly syntax, the function behavior may be completely different from the expected one

due to the position of a few instructions and registers.

The fuzzing-based gadget generation technique is based on known gadget examples. Since

there are already 15 versions of Spectre-V1, we use these gadgets as the starting point for

fuzzing. On the other hand, the available gadgets for other variants are significantly lower

compared to Spectre-V1 gadgets. To solve this issue, other detection tools can be used

to detect Spectre gadgets in benign programs. Then, new gadgets can be generated with

fuzzing technique. We leave the further investigation of generation other Spectre variants as

future work.

Recently, decoder-only Transformer models, such as GPT-4, are shown to be superior

to GANs in terms of text and code generation tasks. The use of more advanced language
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models can help creating a more diverse and realistic data set and, ultimately, it can make the

classifier model more performant. Exploring the use of Transformer models for generating

Spectre gadgets is left as a direction for future research.

Window Size: Since Transformer architecture has no utilization of recurrent modeling

as RNNs do, the maximum sequence length is needed to be set before the training procedures.

Therefore, the sliding window size can be set to at most the maximum sequence length. On

the other hand, our experiments show that using lower window sizes than maximum sequence

length provides more accurate Spectre gadget detection and provides fine-grain information

on the sequence.

4.6 Conclusion

This work, for the first time, proposed NLP inspired approaches for Spectre gadget gener-

ation and detection. First, we extended our gadget corpus to 1.1 million samples with a

mutational fuzzing technique. We introduced the SpectreGAN tool that achieves a high suc-

cess rate in creating new Spectre gadgets by automatically learning the structure of gadgets

in assembly language. SpectreGAN overcomes the difficulties of training a large assembly

language model, an entirely different domain than natural language. We demonstrate 72% of

the compiled code snippets behave as a Spectre gadget, a massive improvement over fuzzing

based generation. Furthermore, we show that our generated gadgets span the speculative

domain by introducing new instructions and their perturbations, yielding diverse and novel

gadgets. The most exciting gadgets are also introduced as new examples of Spectre-V1 gad-

gets. Finally, we propose FastSpec, based on BERT-style neural embedding, to detect the

hidden Spectre gadgets. We demonstrate that for large binary files, FastSpec is 2 to 3 orders

of magnitude faster than oo7 and Spectector while it still detects more gadgets. We also

demonstrate the scalability of FastSpec on OpenSSL libraries to detect potential gadgets.
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Chapter 5

Automated Side-Channel Patching in

Source Code Using LLMs

5.1 Motivation

The advent of microarchitectural attacks has instigated efforts to mitigate vulnerabilities in

hardware/firmware and in deployed software libraries. Earlier vulnerabilities, such as those

exploiting secret dependent execution time and cache/memory access patterns, were followed

by more advanced attacks exploiting microarchitectural optimizations such as out-of-order

and speculative execution [105, 119], transient write forwarding and shared buffers [27, 187,

219].

One of the earliest and still most accessible forms of side-channel leakage is execution

time. If a developer inadvertently writes code, e.g., with secret data-dependent branches,

by measuring the execution time, an attacker can deduce secret information. Therefore,

identifying vulnerable software and replacing them with their constant-time versions has

been a goal of security researchers. This is challenging in practice since repositories have

complex interdependence with many potentially vulnerable pieces, while their execution time

is also dependent on many factors, e.g., the platform and its configuration, the compiler.
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Spectre was first discovered and publicly disclosed by security researchers in the original

Spectre paper in 2018 [105]. Spectre v1 occurs when attackers can trick the CPU into spec-

ulatively executing code that would not normally be run during normal program execution.

By exploiting this vulnerability, attackers can potentially access sensitive data or information

stored in the memory of other applications or the operating system. The attack leverages

the processor’s speculative execution to infer and exfiltrate this sensitive data.

In his blog, Kocher [104] shared 15 code snippets vulnerable to variations of Spectre v1

(Spectre gadgets) to test out a new version of Microsoft VC/C++ compiler with built-in

mitigation [165] based on the addition of the LFENCE instruction to sensitive parts of the code

identified by Microsoft’s static analyzer. The compiler only manages to mitigate Spectre in

the first two gadgets. Kocher points out that his code samples are far from comprehensive,

e.g., they all rely on cache modification as a covert channel, and they all reside in simple

functions more amenable to static analysis. Cauligi et al. [32] present a comprehensive

survey of existing Spectre v1 defenses and non-constant time detection tools e.g. oo7 [225],

Spectector [72], SpecFuzz [160], Pitchfork [30].

Code with microarchitectural vulnerabilities, e.g., secret dependent non-constant time

or code vulnerable to Spectre v1 has since been a significant concern for the tech industry.

Hardware and software vendors have released mitigations to reduce the risk of exploitation,

but fully addressing these vulnerabilities remains an ongoing challenge. Moreover, these

mitigations often come at the cost of decreased performance, as they may disable or limit

certain speculative execution features.

In a study among the crypto library developers, 61.4% of the participants stated that

they are either not aware or they do not use the tools for testing and verifying the constant-

timeness [93] – a necessary but insufficient condition for side-channel security. To make

matters worse, many of these libraries that are used by millions of end-users are managed by

a small number of developers in open-source projects. They neither possess the knowledge

nor the resources to patch their software against such low-level leakages. Often times reported
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vulnerabilities go ignored and unpatched in publicly available open-source crypto libraries

used by millions, e.g., see Microwalk-CI [232], due to lack of resources. Another striking

example is in the OpenSSL Blog Post [44] explaining their decision on why they chose

not to patch for newly discovered Spectre gadgets reported in [146] : “Most potentially

vulnerable code is extremely non-obvious, even to experienced security programmers. It would

thus be quite easy to introduce new attack vectors or fix existing ones unknowingly.” and

“Automated verification and testing of the attacks is necessary but not sufficient. We do

not have automated detection for this family of vulnerabilities, and if we did, it is likely that

variations would escape detection.”. These comments highlight the need for reliable and

transparent patch automation.

In this work, we study the use of LLMs for automated patching of security-critical soft-

ware. Indeed, it is expected that 80% of the software development lifecycle will use generative

AI, i.e., LLMs, by 2025 [62]. Thus, evaluating LLMs’ capability to generate security-critical

implementations is an urgent need. What happens if we use ordinary prompts to generate

crypto code, and how can we improve code generation to improve side-channel security while

ensuring functional correctness? We are encouraged by rapid advances in LLMs. Fueled by

recent innovations in Transformer networks, generative models, and the availability of mas-

sive datasets and large compute clusters, it has become possible to train Large Language

Models (LLMs). LLMs such as GPT3 [26] and GPT4 [161] by OpenAI, BERT [51] and

PaLM2 [12] by Google, RoBERTa [127] and LLaMA [210, 211] by Meta AI have shown im-

pressive performance in AI applications and in natural language processing (NLP). These

tools are also trained using code snippets, allowing one to parse and even generate code in

common programming languages flexibly.

In this work, we study the use of LLMs in concert with state-of-the-art leakage and

vulnerability detection tools to fix data-dependent non-constant time behavior, as well as

secret-dependent branching and Spectre v1 gadgets. Such vulnerabilities are known to exist

in numerous security libraries deployed on millions of machines. Yet, due to the lack of
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resources, i.e., experts and financial resources, they go unpatched. Our goal is to make use

of the massive recent advances in LLMs such as OpenAI GPT, Google PaLM, and Meta

LLaMA to generate patches automatically. Note that LLMs are fairly large, and it takes

weeks to months to train on massive datasets, resources that only large companies have

access to. Our goal is to utilize LLMs via API access to bring down the cost of patch

deployment to cents per microarchitectural leakage.

Contributions

• We present the first comprehensive study of state-of-the-art LLMs, i.e., OpenAI GPT,

Google PaLM 2, and Meta LLaMA, to automatically patch microarchitectural vulnerabil-

ities such as secret dependent (non-constant time) code and Spectre v1 gadgets.

• We build a toolchain that tests binaries for leakage and Spectre detection tools, specifi-

cally Microwalk [232], Pitchfork [30], Spectector [72], and KLEESpectre [223], and then

automatically generates security patches to be included in the source files using LLMs.

• From a Continuous Integration/Continuous Development (CI/CD) perspective in the soft-

ware development life cycle, the proposed framework allows us to patch the source code

(e.g., C/C++, Javascript, etc.) while testing the binary after compilation on a target ma-

chine. Compared to binary patching, we retain the ability to review and revise the source.

At the same time, we are also taking into account the effect of the compiler and platform

configuration on security and efficiency by testing the binary for leakage. This approach

allows us to continuously improve the software as hardware systems and software stacks

evolve.

• On a microbenchmark of C code we compiled from known vulnerabilities, GPT4 excels in

patching 97% of all leakages successfully of every type of patching points in the benchmark,

while the total cost of patching 33 leaks is at $1.34. GPT3.5 was able to fix 62% of the

leakage points while costing 19 times less than GPT4. Google chat-bison and Meta

LLaMa2 patch 56% and 35% across all vulnerabilities, respectively, albeit at much lower
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cost.

• Our framework is only limited by the capability of the detection tools, e.g., false positives

and negatives, and will rapidly improve further with better detection tools. Similarly,

LLMs are improving at an astounding rate (almost every month, a new LLM is released),

and we expect significant improvement in the overall performance of our tool.

• From an efficiency perspective, with up to ∼ 10× faster than Spectre v1 patches generated

with existing methods, our toolchain significantly outperforms compiler-based techniques

such as in clang lfence injection. Hence, the proposed approach provides an opportunity

to remove unnecessary inefficiencies while retaining security.

• Since we are patching the source code with the output generative LLM, the patches are

also commented, which makes it easier to make sense of the patch and maintain the code.

5.2 Related Works

The field of automated program repair has seen various advances, but these studies typically

focus on syntactic and build errors, with fewer exploring the domain of security vulnerabili-

ties, and none, to date, have addressed the issue of microarchitectural vulnerabilities.

DeepFix, as Gupta et al. [77] proposed, aims to automatically correct common pro-

gramming errors using a sequence-to-sequence neural network model. However, this method

is fundamentally limited in scope, as it does not tackle any security vulnerabilities. Its

performance is also contingent on the accuracy of error location prediction, which is inher-

ently challenging. Similarly, the Break-It-Fix-It (BIFI) method by Yasunaga et al. [242]

primarily targets syntactic errors, leaving the important domain of security vulnerabilities

unaddressed. Moreover, despite improving over previous methods, BIFI’s repair accuracy

still leaves a significant percentage of errors uncorrected, pointing towards a potential need

for better training methods and error diversity. The Graph2Diff model introduced by Tarlow

et al. [200] extends the focus to build errors but continues to overlook security vulnerabilities.
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The model’s effectiveness is also potentially limited in complex scenarios, where precise diff

prediction might not be sufficient or even feasible.

The study by Pearce et al. [166] is particularly noteworthy as it forayed into the realm

of security vulnerabilities. Their use of LLMs for zero-shot vulnerability repair is indeed

promising. However, their focus is largely limited to basic software bugs, which, while

important, is only a subset of the challenges developers face. Despite the potential demon-

strated by LLMs, the study did not extend their use to more complex and critical issues,

such as microarchitectural vulnerabilities and sophisticated crypto implementations.

Coming from the hardware perspective, Ahmad et al. [10] consider how LLMs may be

leveraged to repair security-relevant bugs present in Verilog models automatically. In par-

ticular, they explore the prompt space to show that by using OpenAI’s Codex, one may

outperform the Cirfix hardware bug repair tool on its own suite of bugs. For Java code re-

pair, Wu et al. [238] analyze five LLMs and existing automatic program repair (APR) tools

on two real-world benchmark tools. They find that out of the box, both LLMs and APR

fix only a small fraction of vulnerabilities (about 20% for Codex) but also note that fine-

tuning LLMs using APRs does improve the performance. The study by Charalambous et

al. [35] investigates us of LLMs, specifically GPT3.5-turbo, and formal verification checkers,

i.e., Efficient SMT-based Context-Bounded Model Checker (ESBMC), to fix vulnerabilities

in C. The proposed method achieves an impressive success rate of up to 80% in repairing

vulnerable code with buffer overflow and pointer dereference failures.

Garg et al. [61] focus on fixing hard-to-detect performance bugs in C# software with

zero-shot LLMs. They take a slightly different approach: given a line of code that contains

a performance bug, the line is compared to lines in a pre-constructed knowledge base to

retrieve a prompt command that can be used to convey what change needs to be fed into an

LLM. Using OpenAI’s Codex, their tool can generate performance improvement suggestions

equivalent to or better than a developer in 60% of the cases.

Kande et al. [96] study the use of LLMs for the automatic generation of hardware as-
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sertions (in SystemVerilog) for vulnerability testing of production-grade hardware. Their

proof of concept study uses OpenAI’s Codex code-davinci-002 LLM, generating 75,600

assertions and generating correct assertions 4.53% of the time. They note that while the

assertion rate is small, further optimization can improve the rate.

Despite substantial advances in automatic program repair, a clear gap persists in ad-

dressing complex security and especially microarchitectural vulnerabilities in intricate cryp-

tographic implementations. While LLMs show promise, their capabilities need to be further

explored and expanded to tackle these complex and critical challenges effectively. This forms

a compelling motivation for our work.

5.3 Threat Model and Scope

In this work, we focus on preventing secrets from being leaked through the changes ob-

servable to software. Using microarchitectural side-channels, attackers can obtain sensitive

information such as encryption keys, passwords, etc. We assume that the attacker wants to

exploit a certain side channel on the system, and the attack requires security-critical software

that exhibits one or more of the following properties,

• Code access patterns depend on the secret,

• Data access patterns depend on the secret,

• The execution time of the code depends on the secret.

Although it is possible that even if none of these properties exist in logical channels, the

underlying hardware implementation can cause physically visible leakages, such as through

power and electromagnetic emanation, we only consider software-enabled leakages in this

work.

We also assume that the software is free of bugs and works in the intended way. Therefore,

common software bugs, such as buffer overflow, use-after-free, etc, are not considered in this

work. We assume that the attacker has the capability to measure the execution time of the
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software or collect other kinds of metadata through shared system components such as CPU

cache and deduce sensitive information through secret data-dependent branches, memory

access patterns, or by exploiting speculative execution.

We explore the use of state-of-the-art LLMs to improve the resiliency of security-critical

software against these microarchitectural attacks. Since training LLMs from scratch is costly,

time, and energy-consuming and bears an environmental impact [211], we leave custom-

trained LLMs out of scope and focus on only prompting. Note that the models we have

evaluated are not tuned for patching security vulnerabilities, yet their pre-training dataset

is likely to contain documentation and code bases that are related to security.

5.3.1 Research Questions

In this scope, we focus on the following questions:

Q1 Using LLMs, can we gain the ability to patch large-scale software against microarchitec-

tural vulnerabilities?

Q2 How well do LLMs perform for side-channel patching across different programming lan-

guages?

Q3 What is the cost of LLM-based patching? How does it compare in reliability, cost, and

speed against human experts?

Q4 How does the patching performance vary across LLMs?

5.4 Methodology

5.4.1 Ensuring Constant-Time Execution

Since the emergence of timing side-channel attacks [106], many tools have been proposed to

validate the constant-time (data oblivious) property of software. Nevertheless, the burden

of implementing constant-time code predominantly rests on software engineers to this day.

Consequently, numerous security-critical libraries lack any form of testing within their CI/CD
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pipelines for constant-time property [30]. To the best of our knowledge, for the first time, we

propose an automated tool that generates constant-time implementation based on LLMs.

5.4.1.1 Evaluating Side-Channel Leakage

We address a side-channel leakage by assuming a robust adversary (evaluator) with extensive

access to runtime events, including memory accesses and the execution path. The adver-

sary can also select and modify any secret system input. In the context of cache attacks,

the adversary treats memory accesses as a leakage vector, gathering all memory accesses

throughout the execution with various secret values. If a relationship between different se-

crets and memory access variation is found, the adversary can pinpoint instructions related

to secret-dependent memory accesses and reveal potential leakages. Various tools exist in

the software verification landscape to detect such leakages, each capable of ascertaining the

constant-timeness of software [93]. The selection of a specific tool is contingent upon the

particular needs and constraints of the task at hand. In our case, we employ Microwalk [231]

due to its blend of benefits while acknowledging its limitations. Microwalk leverages mutual

information, a robust measure that allows us to quantitatively assess the extent of infor-

mation leakage, providing a clear and interpretable metric. Additionally, Microwalk can

capture a wide range of potential leakages, including those from the execution path and

memory accesses. Most importantly for our use case, it can localize the source of leakage

in the binary and source code (if available). However, it is worth noting that Microwalk

requires executing the target binary multiple times to accurately estimate mutual informa-

tion, which can increase the computational costs. Hence, our choice balances comprehensive

leakage detection, quantitative assessment capability, and computational feasibility.

Microwalk first generates arbitrary inputs for a given secret. Following this, the target

binary is run on each input collecting data on memory allocations, branches, calls, returns,

memory reads and writes, and stack operations in each run. Ideally, constant-time implemen-

tations should have a linear execution path for secret input. Secret-dependent conditional
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Figure 5.1: ZeroLeak patch generator framework overview.

branches leak information about the secret. By considering the execution path as a leakage

vector, we can confirm whether the same operations are performed for any secret input.

Another common leakage source, memory access, should follow a secret-independent pattern

in constant-time implementations. Hence, we ensure memory accesses are either constant or

at least not correlated to the input.

5.4.1.2 Patching for Constant-timeness

Three main challenges need to be addressed for automating the constant-time patches using

LLMs.

Challenge C1 First, patching common software bugs in simple programs often can be

resolved by changes in a few lines of code, which LLMs were shown to be capable of [166].

However, making a software implementation of an algorithm constant-time is far more com-

plex since it requires a deep understanding of algorithm logic, and keeping track of how and

where the secret is used. Also, a single code may have multiple points which contribute to

the overall leakage. Therefore, LLMs do not perform well in fixing a side-channel leakage in
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a complex implementation in a single shot.

Challenge C2 Second, simply stating that the code is showing observable traces that are

correlated to the secret is not enough to patch a complex logic. This is also one of the reasons

why human developers have difficulty creating a constant-time code without localizing the

leakage points. Therefore, it is essential to localize the leakage points in the code for efficient

and effective patches for LLMs as well.

Challenge C3 Finally, prompts should be crafted in the proper way that explains the

reason for the leakage in the most precise and clear manner without leaving any ambiguity.

For example, instructing the LLM to “make the code constant-time” alone in the prompt

without giving any security context can cause misinterpretation of constant-timeness in the

context of time complexity, i.e., that the run-time complexity of the algorithm should be

O(1). This is clearly insufficient since we want the run-time to be independent of the actual

input values.

We overcomeC1 by adopting an iterative approach. Since many of the LLMs are designed

as a chatbot, they perform better in a conversation with back-and-forth message exchange

and with feedback from a human. Since we aim to replace humans in the patching process

with a tool, we can run the generated code on the target platform with the analysis tool and

get feedback without any cost. We use a patching loop that is illustrated in Figure 5.1 that

works as follows:

• Assuming we are testing a function in a library, we first make sure the function is called

from within the Microwalk template and unit tests are ready to verify the correctness of

the code. The analysis template can also be generated using LLMs.

• Then, we compile the code if necessary and run Microwalk on it. Assuming the first

version is already correct, our tool starts parsing the analysis files and passes the vulnerable

functions to LLMs together with prompts so they can generate patched code.
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• The patched code is verified if it is syntactically correct using parsers/compilers. If the

syntax is wrong, we give feedback to LLM until it generates a syntactically correct code.

If the syntactically correct code fails the functional correctness tests embedded in the

Microwalk template, it is forwarded to LLM again as well.

• The loop ends when there is no vulnerability found, but under limited resources, iteration

counts and total execution times can be limited.

We also append the responses given by the LLM when it is syntactically correct. As the

loop continues, the context given to LLM looks like [System, User, Response, User,

Response,...], which is a common practice in chatbot applications. If the context size

reaches the maximum token count of the model, we start dropping from the third message

and forward to keep the system prompt and the original function in the context all the time.

We address C2 by choosing an analysis tool that is capable of localizing the leakage

points in the binary and source code. Microwalk is a suitable selection for this purpose.

The Javascript version can tell exactly which line in the source causes the leakage. The C

version, on the other hand, can mark the leakage source at the assembly level. To translate

the assembly lines to C source code, we compile it with debug symbols and disassemble

the binary using objdump. More advanced reverse engineering tools, such as Ghidra [63]

or IDA [80], can also be used for more accurate results. After disassembling, we create a

mapping of the assembly lines to C lines for use in prompts later.

For C3, we use Microwalk ’s analysis results, which show the exact leakage points as code

lines and categorize the leakage mechanism to certain classes, such as memory access-based

and conditional execution. We incorporate the analysis results into natural language, which

LLMs can understand better, as shown in Figure 5.2. We give a system prompt to the model

but with additional commands that prevent common mistakes. We identified mistakes such

as

• generating only the patched portion of the code because the rest is unchanged,

• calling a hypothetical function or variables that are not defined,
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• changing the number and types of arguments to the given function, and changing the

name of the function,

which all break the program’s compatibility with the rest of the library. We also describe

how new functions can be added if required. Without this command, the model can give

a new function without integrating it into the main function, which also causes crashes

when we directly overwrite the main function. Finally, we include tool and language-specific

commands, shown as <specifics> in Figure 5.2, which are not necessary to generate a

secure/functional code but are required to resolve the compatibility issues, e.g., new features

like let, which was introduced with ES6 to Javascript causes crashes in Jalangi2 which

Microwalk backend is based on for Javascript.

When formulating prompts for patching the side-channel leakage, we consider the follow-

ing options in the user prompt:

Option 1 – Leaky Memory Access Pattern: After giving the full function, we list the

name of arrays in the line of code and give the full line and instruct the model to make the

memory accesses independent of the secret.

Option 2 – Leaky conditional executions: For this case, we parse the if/ternary from

the line and instruct the LLM to implement it without if statements and ternary operators.

Option 3 – Secret dependent loop size: We parse the termination condition in the loop

and instruct the model to keep the number of iterations fixed for every input.

Option 4 – Syntactically/Functionally incorrect code: Some iterations may generate

syntactically incorrect code, which can be detected even without running it. We use the

feedback from the parser/compiler for the next iteration’s prompt to avoid losing the attempt

to patch other bugs since they might still be logically correct. Some iterations may generate

functionally incorrect code, which can be detected during the run time. For that, we use

assert statements in the test benches and set the <crash reason> as The code is not working

correctly..

Since options are limited in this scenario, semi-adaptive prompt crafting based on a
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1 System Prompt:

2 You are an expert at implementing constant -time

3 cryptographic algorithms in <language>.

4 Patch the given functions according to user ′s

5 instructions. Do not give detailed explanations.

6 The generated code should be complete , do not omit

7 any part of the code. It should be able to run

8 without any post -processing. You can implement new

9 functions and integrate them with the original

10 function. Do not introduce new arguments to the

11 given function. Do not change the name of the

12 function. <specifics>

13

14 User Prompt:

15 <Option 1>

16 <function to patch> <array names> array is

17 accessed dependent on the secret in line <line>.

18 Patch the code such that the array access is made

19 input independent.

20 <Option 2>

21 <function to patch> The condition in

22 <if statement> is secret dependent and causes

23 side channel vulnerability. Patch the code such

24 that it does not require any conditional execution.

25 <Option 3>

26 <function to patch> The termination condition in

27 <loop statement> is secret dependent. Patch the

28 code such that loops execute the same amount of

29 time for every input.

30 <Option 4>

31 <crash reason> The generated code must be complete.

32 Generate everything even if you do not make any

33 changes. Try the same patch again.

Figure 5.2: Prompt template for constant time patch. We replace <language> with the
programming language, such as C or Javascript. We use <specifics> for instructing
workarounds for the tool or language-specific compatibility issues. Other variables are

self-explanatory.
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template works well. For a more adaptive system, prompt design can be outsourced from

generative AI and by chaining LLMs [236,237]. Although the prompt templates we propose

are based on expert knowledge, the solution is scalable to large code bases since the options

provided in the templates cover all possible ways of leakages that the detection tools can

find.

5.4.2 Mitigating Spectre-v1

Scalable mitigations to Spectre-v1 come with a cost of high overhead due to too generic

design. On the other hand, low-overhead solutions such as index masking require manually

changing code. Even after manually adding the mitigation in the source code, the effect of

the mitigation on the binary is often overlooked. One such example of the failure of relying

on manual fixes on source code without testing on binary was discovered by [67] on the

Linux kernel. After the emergence of Spectre attacks, Linux developers added a new API

that implements array index nospec macro to clamp the indexes to the arrays to maximum

array size. Although it is a correct fix, in one case, it was found to be eliminated by the

compiler because the compiler semantics is not aware of speculative execution, and it can

optimize out a critical attack mitigation. Hence, in this section, we will focus on how we

can automate low-overhead software mitigations using LLMs that are reliably verified on the

binary.

5.4.2.1 Finding Spectre-v1 Gadgets

Finding Spectre-v1 gadgets in a scalable and sound way remains an ongoing research area.

However, to automate the patching process for Spectre-v1 gadgets, we need a tool that

is both scalable and sound. In this work, we evaluate the usage of several analysis tools,

such as Pitchfork [30], Spectector [72], and KLEESpectre [223], which covers different as-

pects of state-of-the-art detection tools, such as security guarantees, scalability, detection

method, out-of-order execution support, handling non-determinism, and leakage model [31].
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Although Pitchfork also supports the Spectre STL (Store-to-Load) variant, we only consider

PHT (Page History Table), the common variant supported by all three tools. Both Spec-

tector and Pitchfork use a hardware-agnostic constant time leakage model. KLEESpectre

detects if data leakage caused by the speculative execution is visible to the attacker by ex-

tending symbolic execution with micro-architectural features, i.e., cache, and tests each way

of every conditional branch (taken or not taken). It assumes the branch predictor will always

mispredict.

5.4.2.2 Patching Spectre-v1 Gadgets

Although discovering Spectre-v1 gadgets presents significant challenges, devising mitigation

strategies for these gadgets is equally challenging. In this work, for the first time, we propose

using LLMs to patch functions with known leakage points in the transient domain.

Most of the challenges in patching Spectre gadgets overlap with generating constant time

crypto implementations that we explained in Section 5.4.1. Therefore, the overall ZeroLeak

framework in constant time will apply here as well, with different tools instead of Microwalk

in Figure 5.1. Since all the tools we analyzed are capable of extracting symbolic execution

trees, they can pinpoint leakage sources at the assembly level. From assembly, we use the

same approach in 5.4.1.2 to trace it back to the source code.

Our design in prompt template changes according to the speculative leakage mechanism

caused by conditional branches. The system prompt we use is very similar, except we replace

“constant-time” with “secure” since we do not want to instruct the model that there is a non-

speculative leakage in the given code. Note that the leakage mechanism in non-speculative

scenarios involves secret inputs given to the program. However, the inputs are controlled

by the attacker in Spectre-PHT and are not considered secret. For the user prompts, we

consider the following two options that are illustrated in Figure 5.3:

Option 1 – Spectre-v1 Violation: After giving the full function, we parse the statement

that includes if condition or ternary operators, which are translated as conditional branches
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1 User Prompt:

2 <Option 1>

3 <function to patch>

4 <conditional statement> can be speculatively

5 executed when the condition inside is wrong. Fix

6 the code such that the condition is checked

7 without an if statement or ternary operator.

8 <Option 2>

9 <crash reason> The generated code must be complete.

10 Generate everything even if you do not make any

11 changes. Try the same patch again.

Figure 5.3: Prompt template for patching Spectre-v1 gadgets.

in the binary by the compiler. We mention that speculative execution may cause incorrect

executions even if the condition is wrong and instruct the model to replace the conditional

statement. Although more detailed prompts that include further details, such as which array

is indexed and how it is decoded, may sound more intuitive, we choose a more generic and

precise prompt that is less like to confuse low-capacity models; see Section 5.5.4.

Option 2 – Syntactically/Functionally incorrect code: We use the same approach as

in Section 5.4.1.2.

5.5 Evaluation

We evaluate ZeroLeak on both non-constant time code and Spectre gadgets. We design our

experiments in incremental hardness.

Experiment Setup For leakage quantification for constant-time code, we have used docker

images of Microwalk packages with version 3.1.1-pin for C, and version 3.1.1-jalangi2

for Javascript code. To compile the Spectre gadgets, we used clang version 14.0.0. The

experiments were conducted on a machine equipped with an Intel Core i9-7900X CPU,

running Ubuntu 22.04 with kernel version 5.19.0-50-generic. The execution times are given

in terms of CPU clock cycle, so the results are not affected by the dynamic frequency scaling.

We analyzed nine different LLMs released by OpenAI, Google, and Meta. Of these nine
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models, only LLaMA2 with 70B parameters is entirely open-source. For the remaining

models, low-level details such as model architecture and training data were not released to

the public. Although we expect the latest model versions to perform better, we choose fixed

models that do not get upgrades for better reproducibility. Note that all these models are

multimodal and support multiple programming and natural languages. For the comparison

experiments, we use Playground [3] web interface of OpenAI models, Vertex AI [4] prompt

design interface for Google models, and Perplexity AI [1] demo interface for Meta’s model.

For the complete automation of patching the real-world examples, we use OpenAI API

for GPT4. The configuration parameters for models used in the experiments are given in

Table 5.1. Since we used a readily deployed demo of LLaMA2, we did not have access to

configuration parameters.

Table 5.1: Parameter configurations of different LLMs used in this work. T stands for
temperature. max token limits the number of generated responses. top-p and top-k

control the diversity in the sampling method by considering probabilities and token counts,
respectively.

Model T max token top-p top-k best of

GPT4-0613 1.0 2048 1.0 - 1
GPT3.5-turbo-0613 1.2 2048 1.0 - 1
text-davinci-003 0.2 256 0.8 - 5

code-davinci-edit-001 0.7 - 1.0 - 1

chat-bison-001 0.2 2048 - - 1
codechat-bison-001 0.2 1024 - - 1
code-bison-001 0.2 1024 - - 1
text-bison-001 0.2 256 0.8 40 1

5.5.1 Patching Spectre-v1 Gadgets

Since there are already existing compiler mitigations and software guidelines suggested by

hardware vendors, we compare the performance of our approach with them. For example,

adding an inline lfence statement after if statements that act as a speculation barrier by

waiting until the conditional branch is resolved to continue execution. Figure 5.4 illustrates

two different methods for patching a Spectre gadget in the source code. The first method
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adds an lfence instruction between the if condition that checks if the user input idx is

within the array bounds and where that index is used. This way, even if the branch predictor

would mispredict the branch for idx>=publicarray size, the malicious index would not be

used in the array speculatively. The second patch is generated automatically by GPT4.

The method used for this patch is often called index masking, which clamps the value of

the attacker-controlled index to the size of the array to be indexed. This way, the attacker

cannot read out of bounds. Although from a developer perspective, the code does not look

very appealing since it has a redundant if condition in line 8, the code is secure. We also

consider several compiler-based mitigations such as clang SLH, clang lfence, and USLH [248].

We compare our method for patching Spectre-v1 gadgets with other methods on a modified

set of Kocher’s examples [104], which includes 16 functions written in C from [30]. To verify

if a code snipped is a Spectre-v1 gadget, we use three different tools: Pitchfork, Spectector,

and KLEESpectre. USLH has a built-in gadget detection tool as well; however, after our

evaluation, we observed that it does not detect any of the baseline functions as Spectre-v1

gadget. After we contacted the authors, they stated that one of the baselines is in their

definition of a Spectre gadget, but the tool needs to be modified. Therefore, we did not

include it in our experiments. We also omitted KLEESpectre for compiler-based models

due to version incompatibility that requires significant updates in the tool, such as new

KLEE and LLVM versions. The results for leakage evaluation and execution time for each

mitigation on each case are listed in Table 5.2. We noticed that Spectector marks some of

cases with inline lfences mark as Spectre gadget while others mark them as safe. Since lfence

after conditional branches are proposed as the ultimate mitigation by hardware vendors,

such as Intel, we conclude they are false positives. We marked the cases with * if Spectector

does not terminate. In case 8, inline lfence from the source code is not possible since a

ternary operator was used as an array index. We observe that ZeroLeak achieves the best

performance among the compared mitigation technique while still being verified as secure

by multiple tools. In nine out of sixteen cases, the overhead caused by our approach is two
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1 void case_1(uint64_t idx) {

2 if (idx < publicarray_size) {

3 asm volatile ("lfence");

4 temp &= publicarray2[publicarray[idx] * 512];

5 }

6 }

1 void case_1(uint64_t idx) {

2 // Mask idx to ensure it always falls within the range of the publicarray

3 // Assumes publicarray_size is a power of 2

4 uint64_t safe_idx = idx &(publicarray_size-1);

5 // Access the publicarray with safe_idx, this operation is safe now as it does not

depend on the condition

6 uint64_t array_value = publicarray[safe_idx];

7 // Now perform the condition check, and if it evaluates to true, then proceed

8 if (idx < publicarray_size) {

9 temp &= publicarray2[array_value * 512];

10 }

11 }

Figure 5.4: Spectre v1 patch examples on source code. The top one shows inline lfence
mitigation. The bottom one shows the patch generated after our framework.

cycles or less, which shows us that intelligent and automated patches perform better than

generic mitigations.
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5.5.2 Patching a Real World Spectre-v1 Gadget

In our experiments in earlier sections, LLMs showed promising performance in Spectre ex-

amples. Now, we investigate how well they can perform on a real-world target. We selected

a target implemented in OpenSSL, which was previously pointed out by [146]. In response,

OpenSSL stated they would not deploy mitigations for Spectre for several reasons, includ-

ing “maintaining code with mitigations in place would be significantly more difficult” and

“mitigations themselves obscure the code, which increases the maintenance burden.” [44].

Since we observed that LLM-generated patches for Spectre-v1 gadgets tend to use similar

methods, such as index masking which is commonly used for large commercial products,

such as browsers, We evaluate its potential on OpenSSL. We use the same system and user

prompt template that we proposed in Section 5.4.2. We use GPT4 as the patching with

the same configuration as before. GPT4 generates the patch given in Figure 5.5 in the 3rd

iteration. Note that the code is generated with the comments that make the patch easy to

understand. After careful review, we see that the if condition is eliminated, and the check

logic is accumulated on the mask variable. When s->shared sigalgs array is accessed in

line 24, the index is masked with the mask variable. For malicious indices, the function

accesses the 0th element instead of a random location, even under speculative execution.

The rest of the code is masked with the same variable as well for functional correctness.

5.5.3 Patching Javascript Libraries for Constant-Timeness

There has been an exponentially growing interest in crypto libraries implemented on Javascript

over the last decade [2] following the trend that is also known as Atwood’s Law which claims

if a program can be written in Javascript, it will eventually be written in Javascript. Al-

though the popularity of some of the security-critical packages seems to follow this law, they

are not necessarily maintained well, if at all.

In this section, we focus on evaluating our framework on some of the most popular

packages available on npm, which are previously shown to be vulnerable to side-channel
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User prompt:

<function body>

if (s->shared_sigalgs == NULL || idx < 0 || idx >= (int)s->shared_sigalgslen || s->

shared_sigalgslen > INT_MAX) can be speculatively executed when the condition inside

is wrong. Fix the problem such that the condition is checked without the if or ternary

statement.

Patch:

1 int SSL_get_shared_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash,

unsigned char *rsig, unsigned char *rhash){

2 const SIGALG_LOOKUP *shsigalgs;

3 - if (s->shared_sigalgs == NULL

4 - || idx < 0

5 - || idx >= (int)s->shared_sigalgslen

6 - || s->shared_sigalgslen > INT_MAX)

7 - return 0;

8 +/* If any of the conditions are true, the mask will be set to all 1s (i.e., -1).

9 + * If all conditions are false, the mask will be 0. */

10 + int mask = -((s->shared_sigalgs == NULL) | (idx < 0) |

11 + (idx >= (int)s->shared_sigalgslen) |

12 + ((unsigned int)s->shared_sigalgslen >INT_MAX));

13 - shsigalgs = s->shared_sigalgs[idx];

14 - if (phash != NULL)

15 - *phash = shsigalgs->hash;

16 + /* Apply the mask to idx and then use the result to index the array.

17 + * If the mask is all 1s (any of the conditions are true), the array is not accessed.

18 + * If the mask is 0, idx is used unmodified. */

19 + shsigalgs = s->shared_sigalgs[idx & ~mask];

20 - if (psign != NULL)

21 - *psign = shsigalgs->sig;

22 + /* Use the mask to conditionally write the

23 + * output values. If the mask is 0, the output

24 + * values are written. */

25 + *phash = (shsigalgs->hash & mask) | (*phash & ~mask);

26 + *psign = (shsigalgs->sig & mask) | (*psign & ~mask);

27 - if (psignhash != NULL)

28 - *psignhash = shsigalgs->sigandhash;

29 + *psignhash = (shsigalgs->sigandhash & mask) | (*psignhash & ~mask);

30 - if (rsig != NULL)

31 - *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);

32 + *rsig = ((unsigned char)(shsigalgs->sigalg & 0xff) & mask) | (*rsig & ~mask);

33 - if (rhash != NULL)

34 - *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);

35 + *rhash = ((unsigned char)((shsigalgs->sigalg >> 8) & 0xff) & mask) | (*rhash & ~mask);

36 - return (int)s->shared_sigalgslen;

37 + return (s->shared_sigalgslen & ~mask) | (0 & mask);

38 }

Figure 5.5: Patching OpenSSL Spectre gadget example
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leakage but have not been patched in years due to the lack of resources. Since the training

sets of the state-of-the-art LLMs usually include scraped repositories on Github [103], they

can process multiple programming languages, including Javascript. For the evaluation, we

selected some of the targets analyzed byMicrowalk [232] earlier but still remained vulnerable,

such as aes-js [144], base64-js [121] and node-forge [20]. Each of these packages has

weekly downloads ranging from 1M to 15M, which makes their vulnerability impactful1.

We used GPT4 on these libraries using the prompt template explained in Section 5.4.1.2.

The results are summarized in Table 5.3. We observed that out of 127 unique leakage

points across the libraries and files, 117 of them were successfully patched with constant-

time implementation in ∼90 minutes. In aes-js, we have detected a new branch leakage

that was introduced during the patching process; however, the overall number of unique

leakage points has converged to the lowest in this state, which is why we stopped further

iterations.

In addition, we have analyzed a Javascript library implementing CRYSTALS-KYBER [23],

a post-quantum key encapsulation mechanism accepted by NIST [214]. For crystals-kyber

package, we analyzed a key encapsulation using Encrypt768 and Decrypt768 methods. We

lightly modified the syntax such that it is compatible with Jalangi2 and, therefore, with Mi-

crowalk, which only supports ES5.1. For instance, we replaced let and const keywords in

the library with var. ZeroLeak was able to patch all 133 leakages identified by Microwalk in

239 minutes. Note that most of this time is spent in dynamic leakage profiling in Microwalk.

Overall, we observe that how quickly ZeroLeak can complete the patching depends on

the speed of dynamic profiling, which varies highly across the implementations with different

numbers of leakages. Therefore, it could be misleading to give an average time/iteration to

patch per leakage for ZeroLeak.

1We excluded other packages, e.g. elliptic [86] that have dependencies on big number libraries. They
rely on BN.js [85] or jsbn.js [235], which feature dynamic length arrays as the main datatype. To secure
the dependent libraries, the entire BigNum library needs to be rewritten from scratch, relying on fixed-size
operands. We would simply ask the LLM to give us a new elliptic curve Javascript library with the same
API, rather than generating a patch.

128



Table 5.3: Patching vulnerable Javascript libraries. Total leakage includes how many times
each unique code line is triggered during the high-level algorithm which also represents the

importance of each unique leakage. *Introduced during patching.

Library
Time
[mins]

Memory Leak
Patched

Branch Leak
Patched

Total Unique Total Unique

aes-js [144]
AES-ECB 13 16/24 16/24 0/1* 0/1*

base64-js [121]
base64-encode

18
4/4 4/4 - -

base64-decode 4/4 4/4 - -

node-forge [20]
AES-ECB

61
80/80 40/40 1/1 1/1

AES-GCM 284/294 47/49 2/2 1/1
base64-decode 4/4 4/4 - -

crystals-kyber [214]
Kyber-768 239 4/4 2/2 129/129 4/4

5.5.4 Comparison of LLMs

To evaluate the effect of selected model, we compare nine state-of-the-art LLMs from promi-

nent companies, OpenAI, Google, and Meta, which released their models between March

2022 and July 2023. While LLaMA2 is the only fully open-sourced model, we have only

API and/or web interface access to the other evaluated models. We have only evaluated the

LLaMA2 model with 70B number of parameters since the size and capabilities of 7B and

13B versions are much more limited compared to the 70B one.

For comparing the performance on Spectre-v1, we have used the same set of examples as

used in Section 5.5.1. For constant-time patches, i.e., leaky memory access patterns and leaky

conditional branches, we curated a new microbenchmark from the earlier research papers [13,

30,54,112,182,227,230,234], which includes 4 functions with memory access pattern leakage,

12 functions with branch leakage and 1 function that has both vulnerabilities. The functions

are available in Appendix B.2. We also prepared a unit test for each of the leaky functions,

which allows us to ensure functional correctness during patching.

We compare the models with both quantitative measures, such as the successful number

of patches for different benchmarks, estimated cost from the number of tokens used per model
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Table 5.4: Patching performance with different models. Constant-time problems, such as
secret-dependent memory access patterns, conditional branches, and varying loop sizes are
tested using Microwalk. Spectre-V1 was tested using Pitchfork. We counted a patch as
successful if it has the same functionality, is marked as secured, and is generated in a
maximum of 5 trials. †Edit models are free to use by OpenAI. ‡Since we used a demo

website, this does not include the cost of deploying the model on a local server and related
costs to that.

Model Release Date Publisher Open Memory Branch Spectre-V1 Cost [USD]

GPT4-0613 06/13/2023

OpenAI

✗ 5/5 12/13 16/16 $1.34
GPT3.5-turbo-0613 06/13/2023 ✗ 2/5 9/13 10/16 $0.07
text-davinci-003 10/28/2022 ✗ 0/5 7/13 12/16 $2.29

code-davinci-edit-001 03/15/2022 ✗ 0/5 8/13 5/16 $0†

chat-bison-001 07/10/2023

Google

✗ 0/5 5/13 14/16 $0.06
codechat-bison-001 06/29/2023 ✗ 0/5 6/13 0/16 $0.28
code-bison-001 06/29/2023 ✗ 1/5 4/13 0/16 $0.04
text-bison-001 06/07/2023 ✗ 1/5 5/13 0/16 $0.10

Claude-Opus 03/04/2024 Anthropic ✗ 4/5 10/13 13/16 $1.69

LLaMA 2-70B 07/18/2023
Meta

✓ 1/5 8/13 3/16 $0‡
LLaMA 3.1-405B 07/23/2024 ✓ 4/5 8/13 15/16 $0‡

and the current pricing given by the publishers, and qualitative measures, our observations

on the responses of each model. The results are summarized in Table 5.4.

Overall, GPT4 excels in patching every type of leakage we evaluated compared to other

models by successfully patching 97% of all leakage points in the benchmark, while the total

cost of patching 33 leaks remains at $1.34. In OpenAI models, we see an improving trend

with the newer releases. GPT3.5 was able to fix 62% of the leakage points while costing 19

times less than GPT4.

Interestingly, although text-davinci is an older model, it gives competent results similar

to Google’s chat-bisonmodel, which was released almost a year later. We claim it is because

it generates five completions and selects the best one. Generating five completions at a time

also reflects on the cost. Specifically, chat-bison can show a similar performance with

text-davinci and cost 38 times less. Google text-bison and codechat-bison models

do not generate variations in default temperature (0.2), and even with higher temperature

levels (0.7), the performance is poor compared to other models. Most of the time, they

return the same code back as the “fixed code”. Also, in general, *-bison-001 models do not
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int memory_leakage_case_2_transform(int kval) { return LUT[kval % 16]; }

1 int memory_leakage_case_2_transform(int kval) {

2 // This function is constant-time because the array access is input-independent.

3 // The array is indexed by a constant value, which does not depend on the secret.

4 return LUT[kval % 16];

5 }

Figure 5.6: A failed example from codechat-bison. Original function is on top, and the
generated patch is below.

handle newline characters well, resulting in all code generated in a single line. Despite being

syntactically/functionally correct, it makes it harder to localize the leakage and generate

a precise prompt. Therefore, we use a code formatter, clang-format, to standardize the

format and give better readability for patching agents.

If the interface of the model allows, we continue the patching process by giving the

next vulnerable line in the function after the previous one is fixed. If not, we restart the

conversation by giving the new version in the user prompt. For functionally/syntactically

incorrect functions, we do not give feedback on the error since it might cause an unfair

evaluation of the models. Some of the model interfaces are designed better to get feedback,

e.g., GPT models. In this scenario, we regenerate the code using the last given context.

Since the models are probabilistic with a temperature value of T ̸= 0, it samples a new series

of tokens according to the probability distribution. We rarely see syntactically incorrect

responses from all of the models. We observed that most of the leakage points get fixed

in the first few trials if they will get fixed at all. Therefore, we limited the number

of trials to five. Increasing the number of trials in this experiment would not change the

results significantly. We provide an example of failure from Google’s codechat-bison model

in Figure 5.6. The model adds a comment stating the function is constant time even though

it is the same exact function without any patch. Surprisingly, we observed that code-specific

models perform far worse than more generic multimodal chat models such as GPT4, GPT3.5,

and chat-bison. We hypothesize the reason is that these generic models have been trained

with more parameters, resulting in a higher capacity for understanding. Also, they interpret
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natural language better, which is how we translate the feedback from the analysis tools. We

observe that even if the LLM generates a “constant-time looking” C code in most cases, a

verification on the binary level is required. For example, the following function has no if

statement or ternary operator, yet, the compiler generates three different conditional jump

instructions after each comparison to increase the performance.

int equal(char *p, char *q) {

return (p[0]==q[0])&&(p[1]==q[1])&&(p[2]==q[2]);

}

Since our framework takes the binary and analyzes it dynamically, these cases are captured

as well and get rejected.

5.6 Discussion and Limitations

Choice of Generative AI Algorithm GANs (Generative Adversarial Networks) and

VAEs (Variational Autoencoders) are designed for tasks, such as creating realistic images or

processing signals, but they fall short when it comes to generic code generation and fixing

security issues. These methods are excellent for tasks like image denoising or generating

visual content, but they are not built to handle the structured, rule-based nature of pro-

gramming languages. LLMs, by contrast, are trained on diverse datasets, allowing them to

grasp the deeper relationships in code much more effectively. What sets LLMs apart is their

ability to adapt and scale across various programming tasks without needing to be retrained.

They can fix security vulnerabilities or generate accurate code thanks to their training on

massive datasets, which helps them maintain coherence even in complex scenarios. Unlike

GANs or VAEs, LLMs can iteratively improve their outputs using feedback mechanisms like

prompt engineering. This flexibility and their capacity to understand both the structure and

meaning of code make LLMs far better suited for programming-related tasks than GANs or

VAEs.
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Code Coverage Our dynamic testing mechanism highly relies on the coverage of the

profiling tool. In Microwalk, it is possible that certain parts of the program are not executed

and, thus, not being tested. In some scenarios, the LLMs generated correct patches for the

leaky parts identified by Microwalk while removing some parts that are not executed with

the given inputs.

Understanding the Leakage Path One of the challenges with fixing a given Javascript

implementation with a constant time version using LLMs is giving the prompts so that the

model understands how the leakage mechanism works. For instance, when we explain how the

secret leaks through an input-dependent memory access pattern, the model attempts to break

the leakage path by simply copying the lookup table into a new buffer and implementing

the same leaky pattern. The resulting code is an expanded version of the original code with

similar behavior.

Determining Secrets Current leakage detection tools require the secrets to be specified,

which requires human intervention. We leave the automation of this to future work.

Tool Imperfections Microwalk occasionally encounters issues with LLM-generated code,

leading it to run indefinitely without termination. To counteract this, we have implemented a

timeout mechanism to break out of non-terminating loops. It is worth noting that Microwalk

sometimes flags high-level function calls as potential memory leaks, even in the absence of

direct memory access on the flagged line. In such cases, rather than patching the file directly,

it is essential to locate and inspect the function’s declaration. Additionally, Microwalk has

been observed to identify memory leakages when accessing flags of JavaScript objects.

Hard to Fix Functions Some functions are inherently tough to fix. In such a scenario,

we may need to eliminate that function from the caller function completely. However, this

creates additional complications. We observed that LLMs may remove the function call
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without implementing a replacement. Giving feedback for the target variable is tricky since

it is not used directly in the same function.

Comparison of Security Vulnerabilities From our experiments with Spectre-v1 and

general side-channel leakage, we observed that different models are better at different vul-

nerabilities. Yet, as model capacity increases, overall performance on both types of vulner-

abilities increases.

Ethical Questions with AI Contributions Although the code generated by LLMs is

verified as secure by multiple tools, we did not push any code to security-critical libraries

used by millions since, considering the ongoing debate on AI ethics and regulations, it may

raise ethical and legal concerns. We instead will share the code with the library authors for

their revision with a full disclaimer that they are not generated by human developers.

5.7 Conclusion

In this work, we introduced ZeroLeak, the first framework that uses LLMs to automatically

detect and patch side-channel vulnerabilities in software. We demonstrated the effectiveness

and efficiency of our framework with an extensive evaluation of several leakage types, such

as secret-dependent memory access patterns, conditional execution, varying loop sizes as

well as Spectre-v1 gadgets. We show that our tool can automatically patch leakage points

in C and Javascript. ZeroLeak was able to patch side-channel leakage in security-critical

libraries that are not maintained but used by millions of people, such as aes-js, base64-js

and node-forge in less than 1.5 hours for only cents per patch. Finally, we showed our tool

can automatically patch a real-world Spectre-v1 instance in OpenSSL.
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Chapter 6

Exploring µArch Vulnerabilities Using

Reinforcement Learning

6.1 Motivation

In the past two decades, our computing systems have evolved and grown at an astounding

rate. A side effect of this growth has been increased resource sharing and, with it, erosion

of isolation boundaries. Multitenancy has already been shown to be a significant security

and privacy threat in shared cloud instances. VM boundaries can be invalidated either due

to software or hardware bugs [47, 91, 142, 217] or by exploiting subtle information leakages

at the hardware level [143] . Emerging microVM solutions offer isolated VMs to ensure

secure computing environments. For instance, Amazon’s Nitro and more recent introduction

of Firecracker aim to completely virtualize hardware resources and allow sharing using a

lightweight solution which already powers lambda functions handling trillions of requests

each month for AWS customers. While promising, the details of the isolation offered are not

made public by AWS and have yet to be vetted by third parties.

Microarchitectural Threats Arguably, one of the greatest security threats comes from

attacks that target the implementation through side-channels or from hardware vulnerabil-
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ities. Such attacks started as a niche exploiting leakages through execution timing, power,

and electromagnetic emanations but later evolved to exploit microarchitectural (µArch )

leakages, e.g. through shared cache and memory subsystems, speculative execution, shared

peripherals, etc. µArch threats represent one of the most significant types of vulnerabil-

ities since they can be carried out remotely with software access only. Prime examples of

these threats are the early execution timing [106] and cache attacks [122,122,241], and later

Meltdown, Spectre [105], and MDS attacks [27, 142, 216] which allow an unprivileged user

to access privileged memory space breaking isolation mechanisms such as memory space

isolation across processes, cores, browsers tabs and even virtual machines hosted on shared

cloud instances. Active attacks, e.g. Rowhammer, have also proven effective in recovering

sensitive information [110] and [9,148]. While numerous practical countermeasures were pro-

posed and implemented, there remains a massive attack surface unexplored. Indeed, 5 years

after Meltdown was mitigated (August 2023), a new transient execution vulnerability, Down-

fall [141], was discovered that exploits speculative data gathering and allows Meltdown-style

data leakage and even injection across threads.

Lack of Access to Design Internals A significant factor contributing to the difficulty

of evaluating the security of large-scale computer systems is that design details are rarely

disclosed. Given only superficial interface definitions, researchers are forced to reverse en-

gineering and black box analysis. While companies have access to the internals of their

system, it is hard to argue that they are aware of their own designs either due to third-party

IPs, mobility of engineers, and silos isolating their engineering teams from each other. IPs

are orphaned with little superficial information surviving after only a few years of breaking

institutional memory. These factors combined pose a great danger for µArch security.

The primary goal of the proposed work is to answer the following question: Can we

use AI to automatically find brand-new vulnerabilities? In practical terms, can we build

an AI agent that can discover the next Meltdown or Spectre vulnerabilities? Currently,
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there are intense efforts in the cybersecurity research community to deploy AI tools to scan

Open Source Software (OSS) for known vulnerabilities, e.g. for detection in µArch we

have [30,54,72,222,231,232] and for patching [61,77,166,200,238,242] and [208].

We take on a more challenging problem and investigate how we can build an AI Agent

that constantly searches the target platform for brand new µArch vulnerabilities. In a way,

such an ability would bring true scalability and a tipping point since, if granted, we could

surpass human abilities by creating as many AI Agents as we want by just throwing more

cycles at the problem. In the hands of software/hardware vendors, such a tool would allow

us to address vulnerabilities early on before the software advances deeper in the deployment

pipeline. What is missing is the know-how to put such a system together i.e. a tool that

can constantly analyze a hardware/software stack under popular configurations, identify and

report found vulnerabilities, articulating cause and effect and severity of the vulnerability.

In this work, we take inspiration from cybersecurity researchers on how they came up with

new vulnerabilities:

Randomization There is a healthy dose of manual or automated trial and error in dis-

covering new vulnerabilities. In µArch security fuzzing has become an indispensable tool

to test randomized attack vectors and thereby identify or generate improved versions of

vulnerabilities. For instance, Oleksenko et al. [159] developed SpecFuzz to test for specu-

lative execution vulnerabilities. The tool combines dynamic simulation with conventional

fuzzing for the identification of potential Spectre vulnerabilities. Another example is Tran-

syther [142] , a mutational fuzzing tool that generates Meltdown variants and tests them to

discover leaks. Transyther found a previously unknown transient execution attack through

the word combining buffer in Intel CPUs [142]. In [94], Jattke et al. use fuzzing to discover

non-uniform hammering patterns to make Rowhammer fault injection viable in a large class

of DRAM devices. While effective, fuzzing, as currently practiced in µArch security, only

works in small domains and fails to scale to cover larger domains to discover new vulner-
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abilities. Indeed, SpecFuzz for Spectre v1 is only able to Spectre gadgets, and Transyther

discovered the Medusa vulnerability since it is reachable with mild randomization from Melt-

down variants.

The discovery of the timing channel by Kocher [106] led to the discovery of cache-timing

attacks [163]. Similarly, sharing in Branch Prediction Units (BPUs) led to the exploitation

of secret dependent branching behavior to recover leakages [6]. These attacks led to µArch

Covert Channels that may be used intentionally to exfiltrate data, e.g. by signaling via cache

access patterns and break isolation mechanisms. Covert-channels were first used by many

researchers as an initial demonstration of the existence of a side-channel, with the channel

rate providing a measure for the level of the leakage. Covert channels and manipulations in

BPUs, in turn, became enablers for Transient Execution Attacks such as Meltdown, Spectre,

and later MDS attacks. Further, the recent work [141] uses the Meltdown style data leakage

and the LVI style [216] data injection mechanisms in the context of SIMD instructions to

discover new vulnerabilities.

The x86 instruction set is a complex architecture that supports thousands of instructions,

registers, and addressing modes, with each microarchitecture adding layers of optimizations

for performance and efficiency. These optimizations, while beneficial, introduce complexi-

ties that can hide vulnerabilities, as seen with exploits like Meltdown and Spectre, which

exploit unexpected microarchitectural behavior to expose sensitive data. Traditional testing

methods like random fuzzing are inadequate due to the vast number of instruction combi-

nations and the specific, rare conditions that often trigger vulnerabilities. Complex features

like out-of-order and speculative execution increase both performance and the difficulty of

detecting flaws, making the discovery of microarchitectural vulnerabilities challenging.

An effective approach involves intelligent, feedback-based testing, where processor be-

havior under different conditions guides the search for vulnerabilities. This approach allows

testing to focus on high-priority areas, improving efficiency and effectiveness. Feedback

mechanisms can also adapt to new microarchitectures, adjusting their methods for each pro-
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cessor generation, an essential feature given the rapid evolution of hardware designs. Machine

Learning (ML) enhances this feedback-driven approach by identifying patterns in cache or

power usage that indicate potential vulnerabilities. Over time, ML models improve, enabling

more systematic and scalable vulnerability discovery across diverse processor designs. RL

further advances this approach, using a reward-based system to optimize instruction space

exploration. RL agents prioritize instruction sequences that reveal anomalies, efficiently bal-

ancing exploration with exploiting known vulnerabilities, making them suitable for evolving

architectures.

In summary, random fuzzing alone is insufficient for discovering vulnerabilities in modern

x86 microarchitectures. Integrating feedback mechanisms with RL allows a more targeted,

adaptable, and effective approach, essential for uncovering hidden vulnerabilities and main-

taining security in rapidly advancing processor designs.

In this work, we make the following contributions:

1. We propose a novel approach to discovering microarchitectural vulnerabilities using

RL.

2. We develop a custom RL environment that simulates the execution of x86 instructions

on a microarchitecture, allowing the agent to explore the instruction space.

3. We find new transient execution mechanisms based on masked FP exceptions and

MME/x87 transitions demonstrating the effectiveness of the RL agent in discovering

vulnerabilities.

6.2 Related Works

µArch vulnerability discovery has attracted significant attention, leading to the development

of several tools and methodologies aimed at exposing speculative execution and side-channel

vulnerabilities. Osiris [229] introduces a fuzzing-based framework that automates the dis-

covery of timing-based µArch side channels by using an instruction-sequence triple notation:
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reset instruction (setting the µArch component to a known state), a trigger instruction

(modifying the state based on secret-dependent operations), and a measurement instruction

(extracting the secret by timing differences). Transynther [141, 142] automates exploring

Meltdown-type attacks by synthesizing binarizes based on the known attack patterns. For

the classification and root cause analysis of the generated attacks, Transynther uses per-

formance counters and µArch “buffer grooming” technique. AutoCAT [129] automates the

discovery of cache-based side-channel attacks on unknown cache structures using RL. Several

studies also focus on using hardware performance counters to detect speculative execution

issues. For example, [158, 174] use performance counters to monitor mis-speculation behav-

ior. More recently, [34] proposed a particle swarm optimization based algorithm to discover

unknown transient paths. Their main assumption is different instruction sets do not in-

terfere with each other do not share the same resources, therefore, they can be analysed

independently. In this dissertation, we show that this assumption limits the exploration of

the instruction space and combining different instruction sets can lead to new mechanisms

of transient execution.

Although, these tools have shown promise in detecting µArch vulnerabities, they are

limited in their ability to efficiently explore the large instruction space and the complex

interactions between different instructions.

6.3 Threat Model and Scope

Our threat model considers scenarios where attacker and victim processes are co-located in

shared hardware environments, which expose vulnerabilities to µArch attacks. Co-location

can manifest in several forms, including but not limited to threads on the same process,

processes on the same host and virtual machines on a shared server. These attacks exploit

shared µArch resources to infer sensitive data from victim processes, bypassing traditional

memory isolation mechanisms.
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We assume the CPU microcode is up-to-date with the latest mitigations, and the software

has no bugs and SMT is enabled. We assume no access to the confidential design details of

the processor, limiting our analysis to black-box testing. This restriction reflects the real-

world scenario where attackers must rely on external observations and performance counters

to reverse-engineer the processor’s internal behavior.

Although we have not seen example of such an exploit in real-life yet, if unmitigated, these

attacks can lead to significant data breaches, including the extraction of cryptographic keys

and other sensitive information. In this work, we focus on discovering µArch vulnerabilities

using reinforcement learning and we focus on the following research questions:

• RQ1. How can we design an RL framework that efficiently explores the µArch space?

• RQ2. Can RL discover unknown µArch vulnerabilities?

• RQ3. What are the challenges and limitations of using RL for µArch vulnerability

discovery?

6.4 Our RL Framework

In this section, we introduce our RL framework designed for µArch vulnerability analysis.

Automated analysis of µArch vulnerabilities poses the following challanges some of which

were also identified in earlier works [34,142,229]:

• C1. Modern processor designs are complex and their instructions sets are large. Exhaus-

tive search in the instruction space is infeasible.

• C2. Mapping an instruction sequence to a certain µArch vulnerability is non-trivial and

requires expert knowledge.

• C3. The environment is high-dimensional and non-linear and the system state is only

partially observable.

Earlier works attempted to solve C1 by either limiting the type of instructions [34,

158] or limiting the length of the instruction sequence [229]. In this work, we propose a
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Figure 6.1: Overview of the RL framework for µArch vulnerability analysis.⊕
: Concatenation operation

novel approach to address this challenge by leveraging RL to guide the search for µArch

vulnerabilities. Our framework is designed to efficiently explore the instruction space, learn

the optimal policy for selecting instruction sequences, repoduce known vulnerability and,

if exists, discover unknown vulnerabilities. The framework is illustrated in Figure 6.1 and

consists of the following components:

6.4.1 Environment

We build a custom environment based on the underlying CPU model. The environment

represents a black-box model of the CPUmicroarchitecture, where the agent can only interact

with the CPU through the instruction sequences. It takes the instruction sequences generated

by the RL agent, executes them on the CPU, and returns an observation and a reward. It

also updates the state after every action taken.

At the start of each episode, the environment initializes by resetting the instruction state

and clearing the performance counter readings. A reset function is triggered at the beginning

of each new episode to ensure the agent starts with a fresh state.
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All sequences, performance metrics, and detected byte leakages are logged for post-

training analysis. The logged data aids in identifying patterns or characteristics in sequences

that lead to vulnerabilities and provides insights into the agent’s decision-making process.

6.4.2 RL Agent

The RL agent is an multi-layer perceptron (MLP) that generates actions based on obser-

vations given by the environment. In this case, the agent’s goal is to select an instruction

that will be appended to the instruction sequence. The agent is trained using the PPO

algorithm. The goal of the agent is to maximize the reward signal by selecting the best

sequence of actions and eventually trigger µArch vulnerabilities.

6.4.3 Action Space

We define an action as the selection of an assembly instruction from the instruction set.

To map the discrete actions to actual assembly instructions, we use [5]. The action space

is constrained to instructions that are supported by the CPU under test and documented

by the vendor. This constraint helps the agent focus on relevant instructions that exist in

the real-world programs. Since some of the instruction extensions has large number of in-

structions and operand variety, (e.g. AVX-512), we construct the action space hierarchically.

For example, we first select the instruction set (e.g. AVX-512), then the instruction (e.g.

VMOVDDUP), and finally the operands (e.g. XMM0, XMM1). This hierarchical structure

helps prevent larger instructions sets dominating the smaller ones since the agent will ini-

tially randomly select insturction during the exploration phase. To handle the difference in

the number of instructions in each set, we use map different actions to the same insturction

or operands using them modulo operation. For instance, if the maximum number of instruc-

tions in a set is 10 but the model selected 12th instruction, we map it to 12 mod 10 = 2nd

instruction in the selected set.
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6.4.4 State

Eventhough, there are more variables that affect the CPU state other than just the input

instruction sequence, such as, cache content, internal buffers, registers, etc., we simplify the

state representation to only the instruction sequence. The impact of other factors that affects

the CPU state can be minimize by running the same instruction sequence multiple times

until the real state becomes stable, which is a common practice in µArch attacks [122,241].

After each action, the generated assembly instruction is added to the current state.

6.4.5 Observation

Since we do not have access to hardware debug interface, we cannot directly observe the entire

state of the CPU. Therefore, it is a partially observable environment and the observation can

only capture a subset of the environment state as it is mentioned in C3. We tackle this

challange by designing an observation space that consists of a static and a dynamic part.

The static part of the observation is the generated instruction sequence. Similar to the

earlier works [134, 206], we use embeddings to convert the instruction sequence into high-

dimensional fixed-size vectors using a pre-trained LLM. Embeddings capture the patterns

in the assembly code so that the agent understand the structural and functional dependen-

cies between instructions. Before inclusion in the observation space, embeddings undergo

normalization to ensure consistency in data scales.

The dynamic part of the observation is the hardware performance counters. Vendors

give access to low-level monitoring of the CPU events such that developers can identify

bottlenecks in their applicaitons and optimize the performance. In this work, we use the

performance counters to partially capture the CPU state. For measurement, we embed

instruction sequences in a template assembly file, ensuring valid memory addresses in R15

register to prevent segmentation faults. General-purpose registers are preserved on the stack

to avoid unintended corruption. Each sequence is executed multiple times to minimize noise.
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We use the performance counters listed in Table 6.1.These counters are selected based on

their relevance to speculative execution vulnerabilities shown by previous research [34, 158,

174] as well as Intel’s performance monitoring tools [45].

6.4.6 Reward Function

The reward function is often seen as the most critical component of the RL frameworks since

it steers the agent behavior. We address the challenge C2 by carefully designing the reward

function.

The instruction sequences selected by the agent are executed on the CPU, and the CPU’s

behavior is monitored using hardware performance counters. The counters provide feedback

on the speculative execution and microarchitectural effects of the instructions.

Reward =
bad speculation+ observed byte leakage

instruction count
(6.1)

The reward function evaluates the performance counter data collected during instruction

execution. It assigns rewards based on the presence of speculative execution anomalies,

deviations from expected behavior, or other indicators of potential vulnerabilities.

while optimizing for larger amounts of bad speculation while the code executes as well

as speculative execution of following instructions.

The reward calculation incorporates a cap to prevent excessive penalties or rewards,

promoting stable training. The reward values are scaled to maintain balance between per-

formance and security goals.

Testing for Bad Speculation According to Intel’s documentation [46], “bad speculation”

typically results from branch mispredictions, machine clears and, in rare cases, self-modifying

code. It occurs when a processor fills the instruction pipeline with incorrect operations

due to mispredictions. This process leads to wasted cycles, as speculative micro-operations

(uops) are discarded if predictions are incorrect, forcing the processor to recover and restart.
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Although bad speculation is primarily a concern for performance, it also has important

security implications. Microarchitectural attacks exploit transient states created by bad

speculation. During speculation, the CPU may access sensitive data or load it into the

cache, even though the operations will eventually be discarded. These transient states,

particularly in cache memory, create opportunities for attackers to infer sensitive data—such

as encryption keys—by analyzing cache behaviors and measuring access times.

Intel’s formula for quantitatively measurement of bad speculation for a CPU thread is as

Bad Speculation = UOPS ISSUED.ANY− UOPS RETIRED.RETIRE SLOTS

+(4× INT MISC.RECOVERY CYCLES),

(6.2)

which we use in our reward function.

If there is an exceptions detected during the performance counter tests, we terminate

the episode, set the reward to -10 and reset the state. We select this number arbitrarily

to differentiate insturctions sequence with no bad speculation vs instruction sequences that

does not execute at all. Negative reward discourages the agent from generating exceptions.

Note that, handling the exceptions is also possible, but it complicates the reward calculation.

Therefore, we leave it for future work.

Testing for Observable Byte Leakage If the performance counter tests executes suc-

cessfully, we check if the generated instruction sequence results in observable byte leakage

due to speculative execution. Our testing flow for detecting observable byte leakage is shown

in Figure 6.2.

We, first, place the instruction sequence in a template assembly file and run it N times

using rep directive. Similar to performance counter tests, we use predefined addresses for

memory operands and preserve the contents of the general purpose registers in the stack.

Then, we execute a comparison operation based on the instructions types and registers used

in the generated sequence. If there are multiple types of registers used in the sequence,

we select a different comparison instruction specific to that register type. We repeat the
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test flow for each register type used in the sequence. This way we avoid false negatives

due to the register type mismatch. After the comparison, we execute a conditional branch

instruction (jump if equal–JE) which is followed by cache accesses to an array that encode

a predefined sequence of bytes to the cache state. We then measure the access time to the

array using Flush+Reload [241] to decode the bytes and check if it how much it matches

with the encoded bytes. If there is any match, we repeat the same test, this time with

the opposite branch condition (jump if not equal–JNE). If there is a match in this case, we

consider it as an observable byte leakage.

Note that, most of the generated seqences fail either in the first or second step of the

leakage test. For the remaining sequences that passed the first two tests, we run the same

two test after inserting lfence before the branch instruction. If the leakage disappears after

adding lfence, we consider it as a successful sequence that causes observable byte leakage

through bad speculation. Note that, unlike Spectre-BHT [105], we do not train the branch

predictor in the test flow so the root cause of the bad speculation would not be the branch

mispredictions unless the generated sequence has the branch predictor training itself using

branch instructions.

We repeat the test flow for each register type used in the sequence. This way we avoid

false negatives due to the register type mismatch. The number of successfully decoded bytes

are fed into the reward function as the observable byte leakage. Since the byte leakage is a

more direct signal of the vulnerability, we assign a higher weight to it in the reward function.

If an exception is detected at this stage, the environment resets to a safe state, logs the

exception. Only the byte leakage part of the reward is set as zero, yet the bad speculation

part is calculated as usual.
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inst_sequence
    

%rep N
 inst_sequence
%endrep
COMPARISON

JE exit
CACHE_ENCODING
exit:
RET

true
F+R

JNE exit
CACHE_ENCODING
exit:
RET

fail

false

Leakage>0

true

false

Leakage>0

JE exit
lfence
CACHE_ENCODING
exit:
RET

false

true

Leakage==0

JNE exit
lfence
CACHE_ENCODING
exit:
RET

false true

Leakage==0

F+R F+R F+R

success

Figure 6.2: Test flow for detecting observable byte leakage.

149



6.5 Experiments

Experiment Setup We run the experiments on a machine with an Intel Core i9–7900X

CPU @ 3.30GHz with a Skylake-X microarchitecture. The machine has 10 physical cores

and 20 threads. The OS running on the system is Ubuntu 22.04.5 LTS with the Linux kernel

v6.5.0–44-generic. We use glib v2.72.4, nasm v2.15.05, gcc v11.4.0 for compiling and test-

ing the generated assembly files; PyTorch v2.2.1, Stable Baselines3 v2.2.1 and Gymnasium

v0.29.1 for custom RL environment and training the RL agent.

We keep all available kernel mitigations against CPU vulnerabilities enabled. The overview

of the experiment setup is shown in Figure 6.3.

Core 0
L1d L1i

L2

Core 1
L1d L1i

L2

L3

Generated instruction sequences

Core 2
L1d L1i

L2

Core 4
L1d L1i

L2

Core 6
L1d L1i

L2

Core 8
L1d L1i

L2

Core 3
L1d L1i

L2

Core 5
L1d L1i

L2

Core 7
L1d L1i

L2

Core 9
L1d L1i

L2

Environment scripts

RL agent training
Text embedding model inference

GPUGPUGPUGPU

Figure 6.3: Experiment Setup

The RL agent training and the local inference for text embedding model is done on the

GPU clusters with an NVIDIA TITAN Xp, GeForce GTX TITAN X, and two GeForce

GTX 1080Ti. For local inference, we use NV-Embed-v2 [114, 145] embedding model which

ranks the highest at MTEB [147] among the open-source embedding models at the time

this work has been done. For remote inference, we use OpenAI’s text-embedding-3-small

model thru API access. Due to GPU memory limits and the complexity of parallel inference
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management, we use the parallel core testing only with OpenAI API.

After filtering all illegal instructions from [5], we are left with 12598 instructions that

belongs to 74 sets. The largest set has 2192 instructions and the maximum number of

possible operands per instruction is 7. These numbers determine the size of the action space

for the RL agent.

To enhance training speed, the framework is parallelized across multiple CPU cores,

allowing multiple sequences to be evaluated simultaneously. This parallelization reduces

the latency in training and accelerates the agent’s learning process. Although the last level

cache is shared among the cores, each process accesses its own distinct memory region which

does not include any shared libraries or data. Therefore the cache intereference among the

processes is minimal.

6.6 Discovered Transient Execution Mechanisms

6.6.1 Masked Exceptions

[34, 174] demonstrated that FP assists due to denormal numbers cause transient execution

of the following instructions. Our RL agent generated instruction sequences that causes

observable byte leakage through transient execution without generating any ucode assists,

faults or interrupts. Listing 6.2 shows an example of such instruction sequence.

After careful analysis, we noticed that the sequence indeed causes a FP exception, but

the exception is masked by the processor and the program execution is uninterrupted.

Previous works reported transient execution with page faults, device-not-available [119,

142, 195] which requires exception handling and ucode assists such as FP assists [34, 174]

which requires specially crafted inputs.

Transient execution through masked FP exceptions has not been previously reported in

the literature which makes it a new discovery by our RL agent.
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1 generated_assembly_function:

2 ...

3 %rep 500

4 FLD qword [x]

5 %endrep

6 FCOMI st0 , st1

7 JE exit:

8 MOVZX rax , byte [%rdi]

9 SHL rax , 10

10 MOV rax , qword [rsi+rax]

11 exit:

12 ...

13 RET

Listing 6.1: The instruction sequence that triggers masked FP exception

6.6.2 Transitions Between MMX and x87

FP exceptions by-default are masked and do not cause a trap and the program contin-

ues execution. However, starting from glibc v2.2 it is possible to unmask them using

feenableexcept functions from fenv.h library. This function allows the FP exceptions

to cause a trap and the program to be interrupted.

After the results given in Section 6.6.1, we run another training session with the same

configuration but with the feenableexcept function enabling FE INVALID, FE DIVBYZERO,

FE OVERFLOW, FE UNDERFLOW, and FE INEXACT bits of the excepts argument.

With this configuration, the RL agent was still able to generate instruction sequences

that cause observable byte leakage through transient execution without generating any ucode

assists, faults or interrupts. Listing 6.2 shows an example of such instruction sequence.

After simplying the instruction sequence, we observed that the transient execution is

caused by a FP exception that is generated by the FCOMIP instruction. However, the MMX

instruction before the FCOMIP instruction causes the exception to get lost. We use the

feenableexcept function to unmask FP exceptions, yet the exception generated in the

processor gets cleared by the PSUBQ instruction. Eventhough the exception is cleared, the

following instructions are executed speculatively and the transient execution is observed.

Note that the comparison instruction VCMPPD does not have any dependency on the previous
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1 generated_assembly_function:

2 ...

3 %rep 500

4 VERW CX

5 STMXCSR dword [R15]

6 VPBLENDMB YMM2 {K3}{z}, YMM4 , YMM1

7 PSUBQ MM2 , [R15]

8 VMOVSD XMM3 {K3}, XMM2 , XMM3

9 FCOMIP ST4

10 %endrep

11 VCMPPD K3, ZMM1 , ZMM4 , 2

12 JNE exit

13 MOVZX rax , byte [%rdi]

14 SHL rax , 10

15 MOV rax , qword [rsi+rax]

16 exit:

17 ...

18 RET

19

Listing 6.2: A generated assembly instruction sequence that has MMX-x87 transition

instructions, yet it is still executed speculatively and removing the AVX instructions from

the sequence does not break the transient execution.

In Intel documentations [88], it is advised that after the MMX instructions, EMMS instruc-

tion should be used to clear the FPU state to prevent “undefined behavior”. We verified

that adding an EMMS instruction after the MMX instruction makes the FP exception cause

a trap.

6.7 Discussion

Traditional approaches to vulnerability discovery, such as fuzzing and static analysis, often

fail to efficiently explore the vast instruction space or detect vulnerabilities requiring specific

conditions. RL’s feedback-driven approach enables adaptive learning from real-time interac-

tions with the processor, prioritizing sequences likely to expose vulnerabilities. Compared to

other AI methods, RL better fits to this context than the supervised learning, which relies on

labeled data, and unsupervised learning, which lacks dynamic interaction and adaptation.
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RL iteratively refines its strategies using the reward signal, balancing exploration of new

sequences with focus on promising ones to uncover vulnerabilities. Among RL algorithms,

PPO is particularly well-suited for this task. PPO’s clipped objective function ensures stable,

efficient policy updates in sparse and noisy reward landscapes. Unlike value-based methods

like Q-learning, PPO handles high-dimensional action spaces effectively. It also improves on

earlier policy-gradient methods like TRPO, offering similar sample efficiency with reduced

computational overhead.

In this work, we did not consider the impact of other system configurations such as

Hyperthreading, TSX, SGX, AVX, HW prefetch, previous mitigations, Kernel Samepage

Merging, ASLR, page table layout, etc. on the µArch vulnerabilities. We leave this for

future work.

Within the search space, only a small fraction of instruction sequences would indicate

a vulnerability assuming the design went through a thorough security review previously.

Therefore, reward signal is sparse and delayed, making it challenging for the agent to learn

the optimal policy.

6.8 Conclusion

In this study, we developed an RL framework tailored for the detection of vulnerabilities

within processor microarchitecture. We demonstrated that our RL agent can detect previ-

ously discovered vulnerabilities and discover unknown mechanisms of transient execution.

Specifically, our agent discovered that observable transient execution can be triggered by

masked exceptions which do not require any ucode assists or fault handling. Moreover, the

transition between different instruction set extensions cause hardware exceptions to get lost

meanwhile causing observable transient execution.
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Chapter 7

Conclusion

Microarchitectural attacks pose a significant and evolving threat to modern computing sys-

tems. In this work, we emphasize the growing importance of automation for the detection,

mitigation, and discovery of such vulnerabilities. Leveraging new machine learning technolo-

gies makes this automation feasible, offering enhanced adaptability and scalability compared

to traditional methods.

Our analysis highlights the trade-offs between traditional rule-based methods and ML-

based approaches. Rule-based methods excel in scenarios involving known vulnerabilities

with well-defined and fixed mechanisms. However, ML-based approaches demonstrate su-

perior scalability and effectiveness when addressing unknown vulnerabilities or those with

flexible attack mechanisms. In many cases, a hybrid approach that combines both methods

is necessary to address overlapping challenges effectively.

The design of these automated tools must incorporate realistic threat models to ensure

their practical applicability. Unrealistic assumptions can lead to false positives or false nega-

tives, undermining the tool’s reliability. Defining an appropriate threat model is particularly

challenging, as attackers’ capabilities vary significantly across systems and configurations.

Furthermore, generic mitigations may introduce excessive overhead or fail to provide ade-

quate protection, necessitating careful consideration of system-specific constraints.
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As automated detection and mitigation of microarchitectural vulnerabilities advance, we

anticipate broader adoption of these tools in integration and development pipelines. Looking

forward, we envision their deployment in endpoint devices, enabling tailored mitigations that

cater to the specific requirements and configurations of individual systems. This approach

could significantly enhance the security posture of future computing environments while

balancing performance and protection needs.
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Appendix A

Spectre Gadget Generation

A.1 Assembly Gadget Examples

In this section, corresponding assembly gadget of given examples in Section 4.3 are provided.

1 victim_function :
2 .LFB23 :
3 movl g l oba l c ond i t i on (%r ip ) , %eax
4 t e s t l %eax , %eax
5 movl $0 , %eax
6 cmovne %rax , %rdi
7 movslq a r r ay1 s i z e (%r ip ) , %rax
8 cmpq %rdi , %rax
9 jbe .L1

10 l e aq array1(%rip ) , %rax
11 l e aq array2(%rip ) , %rdx
12 movzbl (%rax , %rdi ) , %eax
13 s a l l $12 , %eax
14 c l t q
15 movzbl (%rdx , %rax) , %eax
16 andb %al , temp(%rip )
17 .L1 :
18 rep r e t

Listing A.1: When the C code in Listing 4.3 compiled with certain optimizations (gcc 7-4
with O2 enabled), the generated assembly code contains CMOV instruction which fools

oo7.
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1 victim_function :
2 xchg %rdi , %r13
3 cmpl %esp , %esp
4 movl a r r ay1 s i z e (%r ip ) , %eax
5 shr $1 , %r11
6 cmpq %rdi , %rax
7 jbe .LBB1 1
8 addq %r13 , %r11
9 l e aq array1(%rip ) , %rax

10 movzbl (%rdi , %rax) , %edi
11 jmp leakByteNoin l ineFunct ion
12 .LBB1 1 :
13 r e tq
14 l eakByteNoin l ineFunct ion :
15 movl %edi , %eax
16 sh lq $9 , %rax
17 l e aq array2(%rip ) , %rcx
18 movb (%rax , %rcx ) , %al
19 andb %al , temp(%rip )
20 r e tq

Listing A.2: While generating gadgets with mutational fuzzing technique, this code is
generated by our algorithm from Kocher’s example 3 (using clang-6.0 with 02

optimization).

1 victim_function :
2 seta %si l
3 cmpl $0 , (%rs i )
4 j e .LBB0 2
5 addl %r15d , %r12d
6 sarq $1 , %r11
7 addb %sil , %r15b
8 movzbl array1(%rdi ) , %eax
9 j a .L1324337

10 testw %r10w , %ax
11 sh lq $12 , %rax
12 nop
13 movb array2(%rax ) , %al
14 .L1324337 :
15 andb %al , temp(%rip )
16 .LBB0 2 :
17 r e tq

Listing A.3: While generating gadgets with mutational fuzzing technique, this code is
generated by our algorithm from Kocher’s example 9 (using clang-6.0 with 02

optimization). The seta %sil instruction sets the lowest 8-bit of %rsi register based on a
condition which is not detected by oo7.
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A.2 Mutational Fuzzing

Table A.1: Instructions and registers inserted randomly in the fuzzing technique.

Instructions

add cmovll jns movzbl ror subl
addb cmp js movzwl sall subq
addl cmpb lea mul salq test
addpd cmpl leal nop sarq testb
addq cmpq leaq not sar testl
andb imul lock notq sal testq
andl incq mov or sbbl testw
andq ja movapd orl sbbq xchg
call jae movaps orq seta xor
callq jbe movb pop setae xorb
cmova je movd popq sete xorl
cmovaeq jg movdqa prefetcht0 shll xorq
cmovbe jle movl prefetcht1 shlq lfence
cmovbq jmp movq push shr sfence
cmovl jmpq movslq pushq sub mfence
cmovle jne movss rol subb

Registers

rax eax ax al xmm0 ymm0
rbx ebx bx bl xmm1 ymm1
rcx ecx cx cl xmm2 ymm2
rdx edx dx dl xmm3 ymm3
rsp esp sp spl xmm4 ymm4
rbp ebp bp bpl xmm5 ymm5
rsi esi si sil xmm6 ymm6
rdi edi di dil xmm7 ymm7
r8 r8d r8w r8b xmm8 ymm8
r9 r9d r9w r9b xmm9 ymm9
r10 r10d r10w r10b xmm10 ymm10
r11 r11d r11w r11b xmm11 ymm11
r12 r12d r12w r12b xmm12 ymm12
r13 r13d r13w r13b xmm13 ymm13
r14 r14d r14w r14b xmm14 ymm14
r15 r15d r15w r15b xmm15 ymm15
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Appendix B

Side-Channel Patching

B.1 Example Patching Loop with GPT-4

1 System prompt:

2 You are an expert at implementing constant-time cryptographic algorithms in C. Patch the

given functions according to user’s instructions. Do not give detailed explanations. The

generated code should be complete, do not omit any part of the code. It should be able to

run without any post-processing. You can implement new functions and integrate them with

the original function. Do not introduce new arguments to the given function. Do not

change the name of the function.

1 User prompt:

2 int memory_leakage_case_1(int x, int y, int option) {

3 volatile int z[3] = { 0, 2, 300 };

4 z[2] = y;

5 if (option > 3) {

6 return z[1];

7 } else {

8 return z[x % 3];

9 }

10 }

11

12 z array is accessed dependent on the secret in line return z[x % 3];. Patch the code

such that the array access is made input independent.

1 Response:

2 Sure, I will patch the code using a technique called "array blinding", which uniformly

accesses every element in the array to ensure that access times are input-independent.

3

4 Here is the patched function:

5

6 ‘‘‘C

7 int memory_leakage_case_1(int x, int y, int option) {

8 volatile int z[3] = { 0, 2, 300 };

9 z[2] = y;

10 volatile int result = 0;

11 int i = 0;

12 for(i=0;i<3;i++){
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13 int equal = (i == (x%3));

14 result = (equal * z[i]) + ((1 - equal) * result); // if i == (x % 3), result will

be z[i], otherwise, it remains the same

15 }

16 if (option > 3) {

17 return z[1];

18 } else {

19 return result;

20 }

21 }

22 ‘‘‘

23 In the updated code, regardless of the input, the function now accesses all elements in

the array ‘z‘. We add a mask ‘equal‘ which is 1 if the current index ‘i‘ is the required

index and 0 otherwise. So, the ‘result‘ will take the value of ‘z[i]‘ only when ‘i‘

equals ‘(x % 3)‘. This ensures all elements are accessed, preventing timing attacks based

on conditional access to array elements.

1 User prompt:

2 The condition in if (option > 3) is secret dependent and causes side channel

vulnerability. Patch the code such that it does not require any conditional execution.

1 Response:

2 Absolutely, I understand. We can eliminate the conditional by using a masking technique

similar to what we applied for the array access. Here is the patched function:

3

4 ‘‘‘C

5 int memory_leakage_case_1(int x, int y, int option) {

6 volatile int z[3] = { 0, 2, 300 };

7 z[2] = y;

8 volatile int result = 0;

9 int i = 0;

10 for(i=0;i<3;i++) {

11 int equal = (i == (x%3));

12 result = (equal * z[i]) + ((1 - equal) * result);

13 }

14

15 int mask = (option > 3);

16 return (mask * z[1]) + ((1 - mask) * result);

17 }

18 ‘‘‘

19 With this new method, the function performs the calculation ‘z[1]‘ and ‘result‘ in every

case. The final returned value depends on the mask value. If ‘option > 3‘, mask will be

‘1‘ and ‘z[1]‘ is returned. Otherwise, ‘result‘ is returned. The code is now constant

time and no branches are secret dependent.
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B.2 Microbenchmark of Leaky Functions Compiled from

the Literature

1 // taken from Pitchfork, Cauligi, et al.

2 int memory_leakage_case_1(int x, int y, int option) {

3 volatile int z[3] = { 0, 2, 300 };

4 z[2] = y;

5 if (option > 3) {

6 return z[1];

7 } else {

8 return z[x % 3];

9 }

10 }

11 // table lookup - from DATA - Weiser et al.

12 unsigned char LUT[16]={0x52, 0x19, 0x3E, 0x7F,

13 0x0C, 0x5A, 0x6D, 0x2B,

14 0x3F, 0x1A, 0x7E, 0x53,

15 0x6C, 0x5B, 0x0D, 0x37};

16 int memory_leakage_case_2_transform(int kval) { return LUT[kval % 16]; }

17 int memory_leakage_case_2(int key){

18 int val = memory_leakage_case_2_transform(0);

19 val+=memory_leakage_case_2_transform(key);

20 return val;

21 }

22

23 // from CacheD paper- Wang et al

24 int memory_leakage_case_3(int secret){

25 int table[128] = {0};

26 for (int i=0; i<128; i++){

27 table[i] = i;

28 }

29 int i, t;

30 int index = 0;

31 for (i=0; i<200; i++){

32 index = (index+secret) % 128;

33 t = table[index];

34 t = table[(index) % 79];

35 }

36 return t;

37 }

38 const uint8_t book[10] __attribute__((aligned(64))) = { 52, 48, 55, 51, 56, 54, 50,

49, 57, 53 };

39 uint8_t* memory_leakage_case_4(uint8_t* msg, unsigned len) {

40 for (unsigned i = 0; i < len; ++i)

41 msg[i] = book[msg[i]-48];

42

43 return msg;

44 }
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1 // getelement-taken from CacheAudit, Doychev et al

2 unsigned int A[16] = {0, 1, 2, 3, 4, 5, 6, 7,

3 8, 9, 10, 11, 12, 13, 14, 15};

4 int memory_leakage_case_5(int secret) {

5 if (secret < 16)

6 return A[secret];

7 }

8

9 // isDiffVul1 - taken from FlowTracker https://dl.acm.org/doi/pdf

/10.1145/2892208.2892230

10 int branch_leakage_case_1(char *pw, char *in) {

11 int i;

12 for (i=0; i<16; i++) {

13 if (pw[i]!=in[i]) {

14 return 0;

15 }

16 }

17 return 1;

18 }

19

20 // InsertionSort-taken from CacheAudit, Doychev, et al.

21 uint8_t * branch_leakage_case_2(uint8_t *a, int array_size){

22 int i, j, index;

23 for (i = 1; i < array_size; ++i){

24 index = a[i];

25 for (j = i; j > 0 && a[j-1] > index; j--)

26 a[j] = a[j-1];

27 a[j] = index;

28 }

29 return a;

30 }

31

32 // eq - Time variant - taken from FlowTracker https://dl.acm.org/doi/pdf

/10.1145/2892208.2892230

33 int branch_leakage_case_3(char *p, char *q) {

34 if (p[0] != q[0])

35 return false;

36 else if (p[1] != q[1])

37 return false;

38 else

39 return p[2] == q[2];

40 }

41 // example 1-from Blazer, Antonopoulos, et al.

42 int branch_leakage_case_4(int high, uint low) {

43 int i;

44 if (high == 0) {

45 i = 0;

46 while(i < low) i++;

47 }

48 else {

49 i = low;

50 while(i > 0) i--;

51 }

52 return i;

53 }
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1 // example 2-from Blazer, Antonopoulos, et al.

2 int branch_leakage_case_5(int high, int low) {

3 int i;

4 if (low > 0) { // O(2*low)

5 i = 0;

6 while(i<low) i++;

7 while(i>0) i--;

8 } else { // O(1)

9 if (high == 0) { i = 5; }

10 else { i = 0; i++; }

11 }

12 return i;

13 }

14

15 // taken from https://github.com/PLSysSec/haybale-pitchfork

16 int branch_leakage_case_6(int x) {

17 if (x > 10) {

18 return x % 200 * 3;

19 } else {

20 return x + 10;

21 }

22 }

23 // taken from https://github.com/PLSysSec/haybale-pitchfork

24 int branch_leakage_case_7(int x, int y, int option) {

25 volatile int z[3] = { 0, 2, 300 };

26 z[2] = y;

27 if (option > 3) {

28 return z[1];

29 } else {

30 return z[2];

31 }

32 }

33 // from ctgrind tool github repo

34 char branch_leakage_case_8(unsigned char *a, unsigned char *b) {

35 unsigned i;

36 for (i = 0; i < 16; i++) {

37 if (a[i] != b[i])

38 return 0;

39 }

40 return 1;

41 }
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1 // mu - taken from SC-Eliminator https://dl.acm.org/doi/pdf/10.1145/3213846.3213851

2 // the C code of a textbook implementation of a 3-way cipher.

3 int32_t * branch_leakage_case_9(int32_t *a) {

4 int i;

5 int32_t b[3];

6 b[0] = b[1] = b[2] = 0;

7 for (i=0; i<32; i++) {

8 b[0] <<= 1;

9 b[1] <<= 1;

10 b[2] <<= 1;

11 if(a[0]&1)

12 b[2] |= 1;

13 if(a[1]&1)

14 b[1] |= 1;

15 if(a[2]&1)

16 b[0] |= 1;

17 a[0] >>= 1;

18 a[1] >>= 1;

19 a[2] >>= 1;

20 }

21 a[0] = b[0];

22 a[1] = b[1];

23 a[2] = b[2];

24

25 return a;

26 }

27

28 // taken from https://github.com/PLSysSec/haybale-pitchfork

29 uint8_t branch_leakage_case_10(uint8_t* public_arr, uint8_t public_arr_len, uint8_t*

secret_arr, uint8_t i) {

30 uint8_t x = public_arr[i];

31 for (int j = 0; j < public_arr_len; j++) {

32 secret_arr[j] += x;

33 }

34 if (x > 10) {

35 return public_arr[0] + secret_arr[0];

36 } else {

37 return public_arr[1] + secret_arr[1];

38 }

39 }
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1 // bubblesort- taken from CacheAudit https://www.usenix.org/system/files/conference/

usenixsecurity13/sec13-paper_doychev.pdf

2 uint8_t * branch_leakage_case_11(uint8_t *a, int n){

3 int i, j, temp;

4 for (i = 0; i < n - 1; ++i)

5 for (j = 0; j < n - 1 - i; ++j)

6 if (a[j] > a[j+1]){

7 temp = a[j+1];

8 a[j+1] = a[j];

9 a[j] = temp;

10 }

11 return a;

12 }

13

14 // SelectionSort - taken from CacheAudit https://www.usenix.org/system/files/

conference/usenixsecurity13/sec13-paper_doychev.pdf

15 uint8_t * branch_leakage_case_12(uint8_t *a, int array_size){

16 int i;

17 for (i = 0; i < array_size - 1; ++i){

18 int j, min, temp;

19 min = i;

20 for (j = i+1; j < array_size; ++j){

21 if (a[j] < a[min])

22 min = j;

23 }

24 temp = a[i];

25 a[i] = a[min];

26 a[min] = temp;

27 }

28 return a;

29 }
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Appendix C

RL-based µArch Vulnerability
Exploration

C.1 Instruction Sets
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Table C.1: Number of instructions per set used in the action space

Instruction Set Count Instruction Set Count
ADOX ADCX 8 AES 12
AVX 695 AVX2 286
AVX2GATHER 16 AVX512F 512 2192
AVX512F 128 1816 AVX512F 256 1940
AVX512F SCALAR 584 AVX512DQ 128 247
AVX512DQ 256 281 AVX512DQ 512 357
AVX512BW 128 467 AVX512BW 256 467
AVX512BW 512 467 AVX512F 128N 23
AVX512DQ SCALAR 44 AVX512CD 512 38
AVX512CD 128 38 AVX512CD 256 38
AVX512BW 128N 8 AVX512DQ 128N 8
AVX512DQ KOP 18 AVX512BW KOP 34
AVX512F KOP 15 AVXAES 12
I86 809 I386 196
I486REAL 37 CMOV 96
PENTIUMREAL 5 I186 124
LONGMODE 24 LAHF 2
I286PROTECTED 26 I286REAL 10
FAT NOP 3 RDPMC 1
PPRO 2 BMI1 26
BMI2 32 CET 2
F16C 8 FMA 192
INVPCID 1 CMPXCHG16B 2
LZCNT 6 PENTIUMMMX 129
SSE 97 MOVBE 6
PCLMULQDQ 2 RDRAND 3
RDSEED 3 RDTSCP 1
RDWRFSGS 8 FXSAVE 2
FXSAVE64 2 SSEMXCSR 2
SSE2 264 SSE2MMX 6
SSE3 20 SSE3X87 2
SSE4 96 SSE42 25
POPCNT 6 SSSE3MMX 32
SSSE3 32 X87 119
FCMOV 8 FCOMI 4
XSAVE 6 XSAVEC 2
XSAVEOPT 2 XSAVES 4
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